首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  国内免费   2篇
  2014年   1篇
  2011年   1篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2001年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1993年   2篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1986年   4篇
  1985年   1篇
  1984年   1篇
  1982年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有42条查询结果,搜索用时 15 毫秒
1.
Summary The nuclei of mesophyll cells of olive trees contain numerous sizeable crystalloid inclusions. Cytochemical examination using epoxy resin-embedded, semithin-sectioned tissue indicated the presence of proteins and oligoor polysaccharides in these inclusions. Their electron microscopical analysis revealed a crystalline substructure consisting of intersected subunits of high order. The spacing of the lattice fibrils and the angles of intersection were determined and used to establish a model of the unit cell of crystallization. It is suggested that the nuclear crystalloids of olive trees consist of glycoprotein molecules. They differ from the intranuclear crystalloids observed in other species predominantly in the high density of their subunit arrangement.  相似文献   
2.
Summary In addition to mitochondrion-desmosome complexes, peroxisome-desmosome complexes were present in mouse hepatocytes. The latter complexes consisted of a desmosome which was flanked on one or both sides by a peroxisome. Occasional desmosomes were confronted on one side by a peroxisome and on the other by a mitochondrion. It is suggested that the association between organelles and desmosomes is fortuitous, and that no functional significance can be inferred from this association.This work was supported in part by grants from the Heart Association of Northeastern Ohio, Inc., by grant 3C179 from the Cleveland Foundation, by American Cancer Society Institutional Grant In-57-H, and by grant 5 SO1 FR05335-09 from the National Institutes of Health. The expert technical assistance of Merry A. Hetrick and Jeanne Luschin is acknowledged.  相似文献   
3.
C. Masterson  C. Wood  D. R. Thomas 《Planta》1990,182(1):129-135
-Oxidation enzymes were detected both in the mitochondria and microbodies of Arum maculatum L. spadices and Brassica napus L. seeds. It is apparent that the mitochondrial membrane barrier, which remains intact after sucrose-density-gradient centrifugation, prevents rapid access of acyl-GoA substrates to matrix oxidation tes. Thus intact mitochondria showed little -oxidation enzyme activity. Rupturing of the mitochondrial membrane allowed rapid access of acyl CoAs to matrix sites. Consequently, in ruptured mitochondria, high -oxidation enzyme activities were measured.C. Masterson thanks the Science and Engineering Research Council for the award of a postgraduate student maintenance grant. D.R. Thomas and C. Wood thank their relatives for continuing financial support. The authors also thank West Cumberland Farmers Ltd., Hexham, UK for their gift of oilseed rape seeds.  相似文献   
4.
Summary Microbodies are ubiquitous organelles in fungal cells, occurring in both vegetative hyphae and spores. They are bounded by a single membrane and may contain a crystalloid inclusion with subunits spaced at regular intervals. Typically, they contain catalase which reacts with the cytochemical stain 3,3-diaminobenzidine to yield an electron-opaque product, urate oxidase,l--hydroxy acid oxidase andd-amino acid oxidase. Their fragility and the necessity to disrupt the tough fungal cell wall before isolating them make them difficult to isolate. Analysis of enzymes in purified or partially purified microbodies from fungi indicates that they participate in fatty acid degradation, the glyoxylate cycle, purine metabolism, methanol oxidation, assimilation of nitrogenous compounds, amine metabolism and oxalate synthesis. In organisms where microbodies are known to contain enzymes of the glyoxylate cycle, they are known as glyoxysomes; where they are known to contain peroxidatic activity, they are known as peroxisomes. In some cases microbodies contain enzymes for only a portion of a pathway or cycle. Thus, they must be involved in metabolic cooperation with other organelles, particularly mitochondria. The number, size and shape of microbodies in cells, their buoyant density and their enzyme contents may vary with the composition of the medium; their proliferation in cells is regulated by the growth environment. The isolation from the same organism of microbodies with different buoyant densities and different enzymes suggests strongly that more than one type of microbody can be formed by fungi.  相似文献   
5.
本文综合应用超薄切片、样品倾斜观察、连续切片叠加重组等技术,研究了甜菊叶片及其组培细胞微体晶体的立体结构,以及晶体立体结构与功能的关系.实验结果表明,甜菊微体晶体为立方体形的晶格结构,推测是由过氧化氢酶和乙醇酸氧化酶纵横交错排列而成规则的岩盐结构型立方体.此构型与细胞内活跃的糖代谢活动及甜菊糖苷的形成有关.  相似文献   
6.
Honda M  Hashimoto H 《Protoplasma》2007,231(3-4):127-135
Summary. Division and partitioning of microbodies (peroxisomes) of the green alga Klebsormidium flaccidum, whose cells contain a single microbody, were investigated by electron microscopy. In interphase, the rod-shaped microbody is present between the nucleus and the single chloroplast, oriented perpendicular to the pole-to-pole direction of the future spindle. A centriole pair associates with one distal end of the microbody. In prophase, the microbody changes not only in shape, from a rodlike to a branched form, but also in orientation, from perpendicular to parallel to the future pole-to-pole direction. Duplicated centriole pairs are localized in close proximity to both distal ends of the microbody. In metaphase, the elongated microbody flanks the open spindle, with both distal ends close to the centriole pair at either spindle pole. The microbody further elongates in telophase and divides after septum formation (cytokinesis) has started. The association between the centrioles and both distal ends of the microbody is maintained throughout mitosis, resulting in the distal ends of the elongated microbody being fixed at the cellular poles. This configuration of the microbody may be favorable for faithful transmission of the organelle during cell division. After cytokinesis is completed, the microbody reverts to the perpendicular orientation by changing its shape. Microtubules radiating from the centrosomes flank the side of the microbody throughout mitosis. The close association of centrosomes and microtubules with the microbody is discussed in respect to the partitioning of the microbody in this alga. Correspondence: H. Hashimoto, Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan. Present address: M. Honda, Department of Computational Biology, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan.  相似文献   
7.
The protein storage vacuole (PSV) is a specialized organelle in plant seeds that accumulates storage proteins and phytate during seed development. In many plant species, such as tomato and tobacco, the PSV contains two types of microscopically visible intra-organellar inclusions: a large crystalline lattice of membranes and proteins, the crystalloid, and one or a few large phytate crystals, the globoids. In seeds of the family Brassicaceae, the PSVs lack visible crystalloids and have many small globoids dispersed throughout. We biochemically fractionated PSVs from Brassica napus and defined a crystalloid-like fraction that contained integral membrane protein markers found in crystalloids of other plants. Protein analyses identified a previously undescribed family of proteins, the Brassicaceae PSV-embedded proteins (BPEPs), associated with 'crystalloid' and globoid fractions. The defining characteristics of the BPEPs are an N-terminal signal peptide and tandem MATH domains, which may mediate protein-protein interactions. Database analyses indicated that the BPEPs are unique to Brassicaceae. Immunofluorescence studies using anti-BPEP antibodies and antibodies to other biochemical markers to label B. napus and Arabidopsis thaliana seed sections localized the BPEPs to structures within the PSVs, whose appearance was consistent with a diffuse network of internalized membranes and globoids. These results demonstrate that Brassicaceae PSVs contain internalized membranes, and raise the possibility that BPEPs modify these internal membrane structures to yield a PSV morphology different from that of tomato or tobacco.  相似文献   
8.
ATG genes are required for autophagy-related processes that transport proteins/organelles destined for proteolytic degradation to the vacuole. Here, we describe the identification and characterisation of the Hansenula polymorpha ATG21 gene. Its gene product Hp-Atg21p, fused to eGFP, had a dual location in the cytosol and in peri-vacuolar dots. We demonstrate that Hp-Atg21p is essential for two separate modes of peroxisome degradation, namely glucose-induced macropexophagy and nitrogen limitation-induced microautophagy. In atg21 cells subjected to macropexophagy conditions, sequestration of peroxisomes tagged for degradation is initiated but fails to complete.  相似文献   
9.
Protein bodies (PBs) of European black pine (Pinus nigra Arn.) were isolated from mature seeds. Extracted soluble matrix proteins and crystalloid proteins PBs proteins were investigated by SDS-PAGE electrophoresis in presence and absence of 2-mercaptoethanol. The proteins of molecular masses 16, 17, 18, 61 and 65 kDa were presented only in crystalloid protein samples. Only 15 kDa protein was present in soluble matrix proteins and not in crystalloid proteins. Another protein bands were present in both soluble matrix and crystalloid proteins. 20, 37, 38, 39 and 48 kDa proteins were strongly visible among crystalloid proteins. Bands of 23 and 32 kDa were more visible in soluble matrix protein samples. Different composition in crystalloid proteins was found in absence of 2-mercaptoethanol: no proteins with molecular mass 71 kDa and more proteins in soluble matrix. In case of crystalloid proteins we detected 7 protein bands in interval from 71 to 212 kDa.  相似文献   
10.
A new procedure was used to purify the peroxisomal matrix enzyme hydroxypyruvate reductase (HPR) from green leaves of pumpkin (Cucurbita pepo L.) and spinach (Spinacia oleracea L.). Monospecific antibodies were prepared against this enzyme in rabbits. Immunoprecipitation of HPR from watermelon (Citrullus vulgaris Schrad.) yielded a single protein with a subunit molecular weight of 45 kDa. Immunohistochemical labeling of HPR was found exclusively in watermelon microbodies. Isolated polyadenylated mRNA from light-grown watermelon cotyledons was injected into Xenopus laevis oocytes. The heterologous in-vivo translation product of HPR exhibited the same molecular weight as the immunoprecipitate from watermelon cotyledons, indicating the lack of a cleavable extra sequence. The watermelon HPR translated in oocytes was imported into isolated glyoxysomes from castor bean (Ricinus communis L.) endosperm and remained resistant to proteolysis after the addition of proteinase K. The HPR did not change its apparent molecular weight during sequestration; however, it may have changed its conformation.Abbreviations HPR hydroxypyruvate reductase - PMSF phenylmethylsulfonyl fluoride - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号