首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  免费   0篇
  2012年   1篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1975年   1篇
排序方式: 共有45条查询结果,搜索用时 15 毫秒
1.
[14C]Methylamine influx intoPisum sativum L. cv. Feltham First seedlings showed Michaelis-Menten-type kinetics with apparentV max=49.2 mol·g-1 FW·h-1 and apparentK m=0.51 mM. The competitive interactions between ammonium and methylamine were most obvious when biphasic kinetics were assumed with saturation of the first phase at 0.05 mM. The inhibitor constant for ammonium (K i)=0.027 mM. When [14C]methylamine was used in trace amounts with ammonium added as substrate, the influx of tracer showed Michaelis-Menten-type kinetics with apparentV max=3.46 mol·g-1 FW·h-1 and apparentK m=0.15 mM. The initial rate of net ammonium uptake corresponded with that found when [14C]methylamine was used to trace ammonium influx. The latter was also stimulated by high pHo and inhibited by nitrate. Ammonium pretreatment±methionine sulphoximine or glutamine pretreatment of the seedlings inhibited subsequent [14C]methylamine influx, while methylamine or asparagine pretreatment stimulated [14C]methylamine influx. There was also a stimulatory effect of prior inoculation withRhizobium. The results are discussed in terms of current models for the regulation of ammonium uptake in plants.  相似文献   
2.
During growth of the facultative methylotroph Arthrobacter P1 on methylamine or ethylamine both substrates are metabolized initially in an identical fashion, via the respective aldehydes. The regulatory mechanisms governing the synthesis and activities of enzymes involved in amine and aldehyde utilization were studied in substrate transition experiments. Transfer of ethylamine-grown cells into a medium with methylamine resulted in immediate exeretion of low levels of formaldehyde (max. 0.5 mM) and formate. In the reverse experiment, transfer of methylaminegrown cells into a medium with ethylamine, excretion of much higher levels of acetaldehyde (max. 3.5 mM) occurred. These different levels of aldehyde accumulation were also observed in studies with mutants of Arthrobacter P1 blocked in the synthesis of hexulose phosphate synthase or acetaldehyde dehydrogenase. In wild type Arthrobacter P1, aldehyde production resulted in rapid induction of the synthesis of enzymes involved in their degradation but also in temporary inhibition of further amine utilization and growth. The latter aetivities only resumed at normal rates after the disappearance of the aldehydes from the cultures. Acetaldehyde utilization resulted in intermittent excretion of ethanol and acetate, whereas formaldehyde utilization resulted in further accumulation of formate.During growth of Arthrobacter P1 in the presence of methylamine accumulation of toxic levels of formaldehyde is prevented because of the rapid synthesis of hexulose phosphate synthase to high activities and, in transient state situations, by feedback inhibition of formaldehyde on the activities of the methylamine transport system and amine oxidase.Abbreviations DTNB 5,5-dithiobis-(2-nitrobenzoate) - HPS hexulosephosphate synthase - MS mineral salts - RuMP ribulose monophosphate  相似文献   
3.
Green thallus cells of the aquatic liverwort, Riccia fluitans, are rapidly depolarized in the presence of 1–20 μM NH4Cl and 5–100 μM CH3NH3Cl, respectively. Simultaneously, the membrane conductance is increased from 0.41 to 1.2 S · m?2. Uptake of [14C]methylamine is stimulated by increasing [K+]o and inhibited by increasing [Na+]o or [H+]o, is highly voltage sensitive, and saturates at low amine concentrations.Double-reciprocal plots of (a) maximal membrane depolarization and (b) methylamine uptake vs. external amine concentration give apparent Km values of 2 ± 1 μM ammonia and 25–50 μM methylamine; Km values for changes in conductance and membrane current are greater and voltage dependent. Whereas the amine transport into the cell is strongly inhibited by CN?, the amine efflux is stimulated.The current-voltage characteristics of the ammonia transport are represented by a sigmoid curve with an equilibrium potential of ?60 mV, and this is understood as a typical carrier curve with a saturation current of about 70 mA · m?2. It is further concluded that the evidently carrier-mediated transport is competitive for the two amines tested, and that ammonia and methylamine are transported in the protonated form as NH4+ and CH3NH3+ into the cytoplasm.  相似文献   
4.
The intracellular pH of intact blood cells of the tunicate Ascidia nigra was measured by transmembrane equilibration of [14C]methylamine. The pH of unfractionated blood cells is 7.39±0.10. The pH of vanadocytes, determined in a fractionation study, is 7.2. Previously used methods, in which pH values less than 3.0 are inferred from cell lysis or vital staining experiments, are shown to be unsuitable for intracellular pH determination due to the chemical composition of these vanadium-containing cells.  相似文献   
5.
Abstract Methylophilus methylotrophus can use methylamine as sole source of carbon and nitrogen. Measurements of the specific activity of methylamine dehydrogenase (MNDH) in bacteria grown in batch or chemostat culture showed that MNDH was induced by methylamine and repressed when methanol or NH4+ were provided as alternative carbon or nitrogen sources. The degree of repression varied with the growth conditions. Methanol dehydrogenase (MDH) was present in bacteria growtn on methylamine as sole carbon source, but the specific activity was low compared with that in bacteria grown on medium containing methanol, indicating that this enzyme is induced by methanol.  相似文献   
6.
A methanogen (strain NaT1) that belongs to the family of Methanosarcinaceae and that can grow on tetramethylammonium as the sole energy source has recently been isolated. We report here that cell extracts of the archaeon catalyze the formation of methyl-coenzyme M from coenzyme M and tetramethylammonium. The activity was dependent on the presence of Ti(III) citrate and ATP, and was rapidly lost under oxic conditions. Anoxic chromatography on DEAE-Sepharose revealed that two fractions, fractions 3 and 4, were required for activity. A 50-kDa protein that together with fraction 3 catalyzed methyl-coenzyme M formation from tetramethylammonium and coenzyme M was purified from fraction 4. From fraction 3, a 22-kDa corrinoid protein and a 40-kDa protein exhibiting methylcobalamin:coenzyme M methyltransferase (MT2) activity were purified. The N-terminal amino acid sequences of these purified proteins were determined. The 40-kDa protein showed sequence similarity to MT2 isoenzymes from Methanosarcina barkeri. Cell extract of strain NaT1 grown on trimethylamine rather than on tetramethylammonium did not exhibit tetramethylammonium:coenzyme M methyltransferase activity. The strain was identified as belonging to the genus of Methanococcoides, its closest relative being Methanococcoides methylutens. Received: 7 April 1998 / Accepted: 26 June 1998  相似文献   
7.
The crystal structure of methylamine borane has been determined and contains parallel chains of dihydrogen-bonded CH3NH2BH3 molecules. Thermal decomposition takes place from the melt (ΔHfusion = 8.5 kJ mol−1) and begins with the formation of an ionic borohydride. Hydrogen is liberated in two stages, at ca. 100 and 190 °C, with the observed rates during the first stage (ΔH = −25 kJ mol−1, Ea = 115 kJ mol−1) strongly dependent on temperature and time. cis- and trans-N-trimethylcyclotriborazane are formed during the first stage and subsequently cross-link to yield a non-volatile solid. Before this cross-linking, the system exhibited a high degree of volatility, with weight losses in excess of 80% observed in TG experiments using flowing gas.  相似文献   
8.
Prokaryotes, plants and animals control ammonium fluxes by the regulated expression of ammonium transporters (AMTs) and/or the related Rhesus (Rh) proteins. Plant AMTs were previously reported to mediate electrogenic transport. Functional analysis of AtAMT2 from Arabidopsis in yeast and oocytes suggests that is the recruited substrate, but the uncharged form NH3 is conducted. AtAMT2 partially co-localized with electrogenic AMTs and conducted methylamine with low affinity. This transport mechanism may apply to other plant ammonium transporters and explains the different capacities of AMTs to accumulate ammonium in the plant cell.  相似文献   
9.
Cardiovascular and cerebrovascular disorders are well known to be associated with stress related behaviors. Stress enhances excretion of adrenaline, which is deaminated by monoamine oxidase and methylamine is formed. This product can be further deaminated by semicarbazide-sensitive amine oxidase (SSAO) and converted to toxic formaldehyde, hydrogen peroxide and ammonia. SSAO is located in the cardiovascular smooth muscles and circulated in the blood. We investigated whether formaldehyde can be derived from adrenaline in vivo. Methylamine was confirmed to be a product of adrenaline catalyzed by type A monoamine oxidase (MAO-A). Irreversible and long-lasting radioactive residual activity was detected in different tissues following administration of 1-[N-methyl-3H]-adrenaline. Such irreversible linkage could be blocked by selective MAO-A or SSAO inhibitors. Endothelial cells are quite sensitive to formaldehyde and relatively resistant to hydrogen peroxide. It is possible that stimulation of adrenaline excretion by chronic stress could increase the levels of circulatory formaldehyde. Such chronic formaldehyde stress may be involved in the initiation of endothelial injury and subsequently angiopathy.  相似文献   
10.
In the facultative methylotroph Arthrobacter P1 the enzyme transaldolase plays an important role in both the pentose phosphate pathway and in the ribulose monophosphate cycle of formaldehyde fixation.Among gluconate-negative mutants of Arthrobacter P1 strains occurred which also were unable to grow on xylose because they had lost the ability to synthesize transaldolase. Furthermore, this loss of transaldolase activity resulted in decreased growth rates on a number of other heterotrophic substrates. Contrary to expectation, these mutants still grew on methylamine and were even able to use gluconate as a carbon source at normal rates provided methylamine was supplied as a nitrogen source. Under these conditions high levels of transaldolase were observed.Partial purification of the transaldolases synthesized by gluconate-grown cells of wild type Arthrobacter P1 and methylamine-grown cells of one of these mutants, strain Art 98, revealed the presence of transaldolase isoenzymes. These enzymes displayed similar kinetics but were very different in heat sensitivity. Functionally these isoenzymes are apparently very similar but their synthesis is regulated differently. One of the enzymes is synthesized constitutively whereas the other is specifically induced during growth on C1 compounds. Strain Art 98 has lost the ability to synthesize the constitutive transaldolase. It is postulated that the C1-induced transaldolase serves to ensure a sufficiently high rate of regeneration of ribulose-5-phosphate during growth on C1 compounds.Abbreviations RuMP ribulose monophosphate - DEAE diethylaminoethyl  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号