首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
  2005年   2篇
  1998年   1篇
  1993年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Methoxychlor, a currently used pesticide, is demethylated and hydroxylated by several hepatic microsomal cytochrome P450 enzymes. Also, methoxychlor undergoes metabolic activation, yielding a reactive intermediate (M*) that binds irreversibly and apparently covalently to microsomal proteins. The study investigated whether methoxychlor could inhibit or inactivate certain liver microsomal P450 enzymes. The regioselective and stereoselective hydrox-ylation of testosterone and the 2-hydroxylation of estradiol (E2) were utilized as markers of the P450 enzymes inhibited by methoxychlor. Both reversible and time-dependent inhibition were examined. Coincubation of methoxychlor and testosterone with liver microsomes from phenobarbital treated (PB-microsomes) male rats, yielded marked diminution of 2α- and 16α-testosterone hydroxylation, indicating strong inhibition of P4502C11 (P450h). Methoxychlor moderately inhibited 2β-, 7α-, 15α-, 15β-, and 16β-hydroxylation and androstenedi-one formation. There was only a weak inhibition of 6β-ydroxylation of testosterone. The methox-ychlor-mediated inhibition of 6β-hydroxylation was competitive. By contrast, when methoxychlor was permitted to be metabolized by PB-microsomes or by liver microsomes from pregnenolone-16α-car-bonitrile treated rats (PCN-microsomes) prior to addition of testosterone, a pronounced time-dependent inhibition of 6β-hydroxylation was observed, suggesting that methoxychlor inactivates the P450 3A isozyme(s). The di-demethylated methoxychlor (bis-OH-M) and the tris-hydroxy (ca-techol) methoxychlor metabolite (tris-OH-M) inhibited 6β-hydroxylation in PB-microsomes competitively and noncompetitively, respectively; however, these methoxychlor metabolites did not exhibit a time-dependent inhibition. Methoxychlor inhibited competitively the formation of 7α-hydroxytestosterone (7α-OH-T) and 16α-hydroxy-testosterone (16α-OH-T) but exhibited little or no time-dependent inhibition of generation of these metabolites, indicating that P450s 2A1, 2B1/B2, and 2C11 were inhibited but not inactivated. Methoxychlor inhibited in a time-dependent fashion the 2-hydroxylation of E2 in PB-microsomes. However, bis-OH-M exhibited solely reversible inhibition of the 2-hydroxylation, supporting our conclusion that the inactivation of P450s does not involve participation of the demethylated metabolites. Both competitive inhibition and time-dependent inactivation of human liver P450 3A (6β-hydroxylase) by methoxychlor, was observed. As with rat liver microsomes, the human 6β-hydroxylase was inhibited by bis-OH-M and tris-OH-M competitively and noncompetitively, respectively. Testosterone and estradiol strongly inhibited the irreversible binding of methoxychlor to microsomal proteins. This might explain the “clean” competitive inhibition by methoxychlor of the 6β-OH-T formation when the compounds were coin-cubated. Glutathione (GSH) has been shown to interfere with the irreversible binding of methoxychlor to PB-microsomal proteins. The finding that the coincubation of GSH with methoxychlor partially diminishes the time-dependent inhibition of 6β-hydroxylation provides supportive evidence that the inactivation of P450 3A isozymes by methoxychlor is related to the formation of M*.  相似文献   
2.
Environmental estrogenic compounds or xenoestrogens can mimic natural estrogens and cause a variety of adverse effects on aquatic wildlife. The purpose of the present work was to investigate if xenoestrogens are able to cause proliferation of liver peroxisomes using zebrafish (Danio rerio) as a model. Adult male zebrafish were exposed for 15 days to 17beta-estradiol (E2) and the xenoestrogens dibutylphthalate (DBP), methoxychlor (MXC), 4-tert-octylphenol (OP) and 17alpha-ethynylestradiol (EE2). All five tested compounds caused significant proliferation of liver peroxisomes (p < 0.05) as indicated by increased peroxisomal surface and numerical densities and elevated activities of the peroxisomal beta-oxidation enzyme acyl-CoA oxidase (AOX). In the case of DBP, MXC and E2, positive significant correlations between peroxisomal density parameters and AOX were found. The treatments did not produce gross alterations in testis histology, but spermatogenic cell proliferation was disturbed in E2 and EE2-treated groups and vitellogenin levels increased significantly in fish exposed to MXC, OP, EE2 and E2 with respect to controls. Furthermore, a significant correlation between vitellogenin levels and AOX activity was found for MXC, OP and EE2 treatments, suggesting that for the latter xenoestrogens early estrogenic effects are associated with liver peroxisome proliferation. No such association occurred with typical peroxisome proliferators such as DBP.  相似文献   
3.
4.
Methoxychlor, an organochlorine pesticide, has been reported to induce abnormalities in male reproductive tract. However, the insight into the mechanisms of gonadal toxicity induced by methoxychlor is not well known. We investigated whether treatment with methoxychlor would alter the levels of stress proteins, heat shock proteins (HSP), and clusterin (CLU), and oxidative stress‐related parameters in the testis of adult male rats. Animals were exposed to a single dose of methoxychlor (50 mg/kg body weight) orally and were terminated at various time points (0, 3, 6, 12, 24, and 72 h) using anesthetic ether. The levels of HSP70, CLU, and the activities of superoxide dismutase (SOD), catalase, and lipid peroxidation levels were evaluated in a 10% testis homogenate. A sequential reduction in the activities of catalase and SOD with concomitant increase in the levels of thiobarbituric acid reactive substance (TBARS) was observed. These changes elicited by methoxychlor were very significant between 6–12 h of posttreatment. Immunoblot analysis of HSP revealed the expression of HSP72, an inducible form of HSP, at certain time points (3–24 h) following exposure to methoxychlor. Similarly, the levels of secretory CLU (sCLU) were also found to be elevated between 3–24 h of treatment. The present data demonstrate methoxychlor‐elicited increase in the levels of inducible HSP72 and sCLU, which could be a part of protective mechanism mounted to reduce cellular oxidative damage. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:29–35, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20262  相似文献   
5.
Estrogenic endocrine disruptors (EEDs) are naturally occurring or man-made compounds present in the environment that are able to bind to estrogen receptors and interfere with normal cellular development in target organs and tissues. There is mounting evidence that EEDs can interfere with the processes of sexual differentiation of brain and behavior in different animal models. We investigated the effects of maternal exposure to EEDs, at concentrations within the range of human exposure and not patently teratogenic, on behavioral responses of male and female house mice (Mus musculus domesticus) before and after puberty. Pregnant dams were trained to spontaneously drink daily doses of corn oil with or without the estrogenic plastic derivative, bisphenol A (BPA 10 microg/kg), or the estrogenic insecticide methoxychlor (MXC 20 microg/kg) from gestation day 11 to postpartum day 8. Their male and female offspring were examined at different ages to examine several components of explorative and emotional behaviors in 3 experimental paradigms: a novelty test before puberty and, as adults, a free-exploratory open-field test and the elevated plus maze test. The main results are sex differences in control mice on a number of behavioral responses at both ages and in all experimental paradigms, while perinatal exposure to BPA or MXC decreased or eliminated such sex differences. The present findings are evidence of long-term consequences of developmental exposure to BPA and MXC on neurobehavioral development and suggest a differential effect of low-dose exposure to these estrogenic chemicals in males and females.  相似文献   
6.
7.
Cytochrome P450 monooxygenase CYP6G1 of Drosophila melanogaster was heterologously expressed in a cell suspension culture of Nicotiana tabacum. This in vitro system was used to study the capability of CYP6G1 to metabolize the insecticide methoxychlor (=1,1,1‐trichloro‐2,2‐bis(4‐methoxyphenyl)ethane, 1 ) against the background of endogenous enzymes of the corresponding non‐transgenic culture. The Cyp6g1‐transgenic cell culture metabolized 96% of applied methoxychlor (45.8 μg per assay) within 24 h by demethylation and hydroxylation mainly to trishydroxy and catechol methoxychlor (16 and 17%, resp.). About 34% of the metabolism and the distinct formation of trishydroxy and catechol methoxychlor were due to foreign enzyme CYP6G1. Furthermore, methoxychlor metabolism was inhibited by 43% after simultaneous addition of piperonyl butoxide (458 μg), whereas inhibition in the non‐transgenic culture amounted to 92%. Additionally, the rate of glycosylation was reduced in both cultures. These results were supported by the inhibition of the metabolism of the insecticide imidacloprid ( 6 ; 20 μg, 24 h) in the Cyp6g1‐transgenic culture by 82% in the presence of piperonyl butoxide (200 μg). Due to CYP6G1 being responsible for imidacloprid resistance of Drosophila or being involved in DDT resistance, it is likely that CYP6G1 conveys resistance to methoxychlor ( 1 ). Furthermore, treating Drosophila with piperonyl butoxide could weaken the observed resistance phenomena.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号