首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   631篇
  免费   10篇
  国内免费   28篇
  2023年   3篇
  2022年   2篇
  2021年   3篇
  2020年   9篇
  2019年   3篇
  2018年   14篇
  2017年   11篇
  2016年   7篇
  2015年   4篇
  2014年   31篇
  2013年   44篇
  2012年   32篇
  2011年   22篇
  2010年   15篇
  2009年   39篇
  2008年   41篇
  2007年   35篇
  2006年   30篇
  2005年   26篇
  2004年   44篇
  2003年   20篇
  2002年   28篇
  2001年   19篇
  2000年   22篇
  1999年   29篇
  1998年   32篇
  1997年   25篇
  1996年   20篇
  1995年   19篇
  1994年   19篇
  1993年   13篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有669条查询结果,搜索用时 15 毫秒
1.
Glutamine synthetase (GS), an essential enzyme in ammonia assimilation and glutamine biosynthesis, has three distinctive types: GSI, GSII and GSIII. Genes for GSI have been found only in bacteria (eubacteria) and archaea (archaebacteria), while GSII genes only occur in eukaryotes and a few soil-dwelling bacteria. GSIII genes have been found in only a few bacterial species. Recently, it has been suggested that several lateral gene transfers of archaeal GSI genes to bacteria may have occurred. In order to study the evolution of GS, we cloned and sequenced GSI genes from two divergent archaeal species: the extreme thermophile Pyrococcus furiosus and the extreme halophile Haloferax volcanii. Our phylogenetic analysis, which included most available GS sequences, revealed two significant prokaryotic GSI subdivisions: GSI-a and GSI-. GSIa-genes are found in the thermophilic bacterium, Thermotoga maritima, the low G+C Gram-positive bacteria, and the Euryarchaeota (includes methanogens, halophiles, and some thermophiles). GSI--type genes occur in all other bacteria. GSI-- and GSI--type genes also differ with respect to a specific 25-amino-acid insertion and adenylylation control of GS enzyme activity, both absent in the former but present in the latter. Cyanobacterial genes lack adenylylation regulation of GS and may have secondarily lost it. The GSI gene of Sulfolobus solfataricus, a member of the Crenarchaeota (extreme thermophiles), is exceptional and could not be definitely placed in either subdivision. The S. solfataricus GSI gene has a shorter GSI--type insertion, but like GSI-a-type genes, lacks conserved sequences about the adenylylation site. We suspect that the similarity of GSI- genes from Euryarchaeota and several bacterial species does not reflect a common phylogeny but rather lateral transmission between archaea and bacteria.Correspondence to: J.R. Brown 1073  相似文献   
2.
Abstract: Hyperthermophiles are a recently discovered group of microorganisms that grow at and above 90°C. They currently comprise over 20 different genera, and except for two novel bacteria, all are classified as Archaea. The majority of these organisms are obligately anaerobic heterotrophs that reduce elemental sulfur (S°) to H2S. The best studied from a biochemical perspective are the archaeon, Pyrococcus furiosus , and the bacterium, Thermotoga maritima , both of which are saccharolytic. P. furiosus is thought to contain a new type of Entner-Doudoroff pathway for the conversion of carbohydrates ultimately to acetate, H2 and CO2. The pathway is independent of nicotinamide nucleotides and involves novel types of ferredoxin-linked oxidoreductases, one of which has tungsten, a rarely used element, as a prosthetic group. The only site of energy conservation is at the level of acetyl CoA, which in the presence of ADP and phosphate is converted to acetate and ATP in a single step. In contrast, T. maritima utilizes a conventional Embden-Meyerhof pathway for sugar oxidation. P. furiosus also utilizes peptides as a sole carbon and energy source. Amino acid oxidation is thought to involve glutamate dehydrogenase together with at least three types of novel ferredoxin-linked oxidoreductases which catalyze the oxidation of 2-ketoglutarate, aryl pyruvates and formaldehyde. One of these enzymes also utilizes tungsten. In P. furiosus , virtually all of the reductant that is generated during the catabolism of both carbohydrates and peptides is channeled to a cytoplasmic hydrogenase. This enzyme is now termed sulhydrogenase, as it reduces both protons to H2 and S°(or polysulfide) to H2S. S° reduction appears to lead to the conservation of energy in P. furiosus but not in T. maritima , although the mechanism by which this occurs is not known.  相似文献   
3.
We have isolated a chaperonin from the hyperthermophilic archaeon Sulfolobus solfataricus based on its ability to inhibit the spontaneous refolding at 50 degrees C of dimeric S. solfataricus malic enzyme. The chaperonin, a 920-kDa oligomer of 57-kDa subunits, displays a potassium-dependent ATPase activity with an optimum temperature at 80 degrees C. S. solfataricus chaperonin promotes correct refoldings of several guanidine hydrochloride-denatured enzymes from thermophilic and mesophilic sources. At a molar ratio of chaperonin oligomer to single polypeptide chain of 1:1, S. solfataricus chaperonin completely inhibits spontaneous refoldings and suppresses aggregation upon dilution of the denaturant; refoldings resume upon ATP hydrolysis, with yields of active molecules and rates of folding notably higher than in spontaneous processes. S. solfataricus chaperonin prevents the irreversible inactivations at 90 degrees C of several thermophilic enzymes by the binding of the denaturation intermediate; the time-courses of inactivations are unaffected and most activity is regained upon hydrolysis of ATP. S. solfataricus chaperonin completely prevents the formation of aggregates during thermal inactivation of chicken egg white lysozyme at 70 degrees C, without affecting the rate of activity loss; ATP hydrolysis results in the recovery of most lytic activity. Tryptophan fluorescence measurements provide evidence that S. solfataricus chaperonin undergoes a dramatic conformational rearrangement in the presence of ATP/Mg, and that the hydrolysis of ATP is not required for the conformational change. The ATP/Mg-induced conformation of the chaperonin is fully unable to bind the protein substrates, probably due to disappearance or modification of the substrate binding sites. This is the first archaeal chaperonin whose involvement in protein folding has been demonstrated.  相似文献   
4.
Because of its low solubility it is unlikely that elemental sulfur serves as the direct substrate for sulfur-reducing bacteria. To test the hypothesis that polysulfide may represent a soluble intermediate of sulfur reduction, the maximal polysulfide concentrations formed from elemental sulfur in aqueous sulfide solutions were measured at near neutral pH and at temperatures up to 90°C. The saturation concentrations decreased by two orders of magnitude when the pH was lowered from 7 to 6 at a given temperature, and increased about tenfold when the temperature was raised from 37°C to 90°C at a given pH. The dissolution of 0.1 mM zerovalent sulfur in 1 mM sulfide (H2S+HS) required a pH of 7.5 at 20°C and of only 6.1 at 100°C. A comparison with the growth optima of sulfur-reducers suggests that polysulfide is present at sufficient concentration at the growth conditions of the Bacteria and the moderately acidophilic Archaea. Polysulfide is apparently not available at the growth conditions of the extremely acidophilic Archaea. Alternative mechanisms for the sulfur utilization under these conditions are discussed.Abbreviations MOPS Morpholinopropanesulfonate - PIPES 1,4 piperazine-N,N-bis(2-ethanesulfonate) - HEPES N-2-hydroxy-ethylpiperazine-N-ethanesulfonate  相似文献   
5.
The hyperthermophilic archaeon Pyrococcus furiosus was grown on pyruvate as carbon and energy source. The enzymes involved in gluconeogenesis were investigated. The following findings indicate that glucose-6-phosphate formation from pyruvate involves phosphoenolpyruvate synthetase, enzymes of the Embden-Meyerhof pathway and fructose-1,6-bisphosphate phosphatase.Cell extracts of pyruvate-grown P.furiosus contained the following enzyme activities: phosphoenolpyruvate synthetase (0.025 U/mg, 50 °C), enolase (0.9 U/mg, 80 °C), phosphoglycerate mutase (0.13 U/mg, 55 °C), phosphoglycerate kinase (0.01 U/mg, 50 °C), glyceraldehyde-3-phosphate dehydrogenase reducing either NADP+ or NAD+ (NADP+: 0.019 U/mg, NAD+: 0.009 U/mg; 50 °C), triosephosphate isomerase (1.4 U/mg, 50 °C), fructose-1,6-bisphosphate aldolase (0.0045 U/mg, 55 °C), fructose-1,6-bisphosphate phosphatase (0.026 U/mg, 75 °C), and glucose-6-phosphate isomerase (0.22 U/mg, 50 °C). Kinetic properties (V max values and apparent K m values) of the enzymes indicate that they operate in the direction of sugar synthesis. The specific enzyme activities of phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase (NADP+-reducing) and fructose-1,6-bisphosphate phosphatase in pyruvate-grown P. furiosus were by a factor of 3, 10 and 4, respectively, higher as compared to maltose-grown cells suggesting that these enzymes are induced under conditions of gluconeogenesis. Furthermore, cell extracts contained ferredoxin: NADP+ oxidoreductase (0.023 U/mg, 60 °C); phosphoenolpyruvate carboxylase (0.018 U/mg, 50 °C) acts as an anaplerotic enzyme.Thus, in P. furiosus sugar formation from pyruvate involves reactions of the Embden-Meyerhof pathway, whereas sugar degradation to pyruvate proceeds via a modified non-phosphorylated Entner-Doudoroff pathway.  相似文献   
6.
7.
Sponges accommodate a diverse group of microorganisms with varied metabolic capabilities. The bacterial associates of sponges are widely studied while our understanding of archaeal counterparts is scanty. In the present study, we report the archaeal associates of two sponges, Pseudoceratina purpurea (NCBI barcode: KX454492) and Cinachyra sp. (NCBI barcode: KX454495), found in the coral reef ecosystems of Gulf of Mannar, India. Archaea in the water column was predominated by members of class Halobacteria of Phylum Euryarchaeota (97%) followed by a minor fraction (3%) of Nitrosopumilus sp. of phylum Thaumarchaeota. Interestingly, Thaumarchaeota was identified as the sole archaeal population associated with the two sponges studied, among which Nitrosopumilus sp. occuppied 80 and 100% of the sequences in the clone library of P. purpurea and Cinachyra sp. respectively. Other archaea found in the P. purpurea were Nitrososphaera (10%) and unclassified ones (10%). The study identified Nitrosopumilus sp. as a unique symbiotic archaeon of sponges, P. purpurea and Cinachyra sp. The existence of host driven factors in selecting specific associates from a diverse group of archaea in the environment may need further investigations.  相似文献   
8.
Twenty-six fully sequenced archaeal genomes were searched for genes coding for putative deoxyribonucleoside kinases (dNKs). We identified only 5 human-like thymidine kinase 1 genes (TK1s) and none for non-TK1 kinases. Four TK1s were identified in the Euryarchaea and one was found in the Crenarchaea, while none was found in Nanoarchaeum. The identified TK1s have high identity to Gram-positive bacteria TK1s. The TK1s from archaea, Gram-positive bacteria and eukaryotes share the same common ancestor, while the TK1s from Gram-negative bacteria belong to a less-related subgroup. It seems that a functional deoxyribonucleoside salvage pathway is not crucial for the archaeal cell.  相似文献   
9.
The thermophilic anaerobic digestion (TAD) of sewage sludge has often been found to be less stable than mesophilic treatment. In comparison to mesophilic digesters, thermophilic reactors treating sludge are generally characterized by relatively high concentrations of volatile fatty acids (VFA) in the effluent along with poor effluent quality, indicating a lower level of process stability. However, reviewing the literature related to the procedure for obtaining a thermophilic inoculum, it seems that most of the problems associated with the instability and the accumulation of organic intermediates are the result of the manner in which the thermophilic sludge has been obtained. In this paper, the different options available for obtaining an anaerobic digester operating at thermophilic temperature (55°C) have been reviewed. In this light, rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤500?mg acetic acid L?1 before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号