首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   98篇
  免费   1篇
  国内免费   1篇
  2023年   1篇
  2017年   1篇
  2013年   5篇
  2009年   6篇
  2008年   2篇
  2007年   5篇
  2006年   5篇
  2005年   4篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   6篇
  1992年   2篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   3篇
  1987年   5篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
排序方式: 共有100条查询结果,搜索用时 15 毫秒
1.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   
2.
Abstract In the process of methanogenesis, 5,6,7,8-tetrahydromethanopterin (H4MPT) is the carrier of the C1 unit at the formyl through methyl state of reduction. By the transfer of a formyl group from formylmethanofuran, 5-formyl- and 10-formyl-H4MPT are formed in hydrogenotrophic and methylotrophic organisms, respectively. Cyclohydrolysis of the 5- and 10-formyl derivatives then yields 5,10-methenyl-H4MPT, which is reduced in two subsequent coenzyme F420-dependent reactions to 5-methyl-H4MPT. Following the transfer of the methyl group to coenzyme M, the substrate of the terminal step in methanogenesis, methylcoenzyme M, is produced. In this paper properties of the enzymes catalyzing the individual H4MPT-dependent reactions are discussed.  相似文献   
3.
Concentrated cell suspensions of methanogenic bacteria reductively dechlorinated 1,2-dichloroethane via two reaction-mechanisms: a dihalo-elimination yielding ethylene and two hydrogenolysis reactions yielding chloroethane and ethane, consecutively. The transformation of chloroethane to ethane was inhibited by 1,2-dichloroethane. Stimulation of methanogenesis caused an increase in the amount of dechlorination products formed, whereas the opposite was found when methane formation was inhibited. Cells of Methanosarcina barkeri grown on H2/CO2 converted 1,2-dichloroethane and chloroethane at higher rates than acetate or methanol grown cells.Abbreviations BrES 2-bromoethanesulfonic acid - CA chloroethane - 1,2-DCA 1,2-dichloroethane - F430 Ni(II)tetrahydro-(12, 13)-corphin with an uroporphinoid (III) ligand skeleton  相似文献   
4.
F430 is the prosthetic group of the methylcoenzyme M reductase of methanogenic bacteria. The compound isolated from Methanosarcina barkeri appears to be identical to the one obtained from the only distinctly related Methanobacterium thermoautotrophicum. F430 is thermolabile and in the presence of acetonitrile or C10 in4 sup- two epimerization products are obtained upon heating; in the absence of these compounds F430 is oxidized to 12, 13-didehydro-F430. The latter is stereoselectively reduced under H2 atmosphere to F430 by cell-free extracts of M. barkeri or M. thermoautotrophicum. H2 may be replaced by the reduced methanogenic electron carrier coenzyme F420.Abbreviations CH3S-CoM methylcoenzyme M, 2-methylthioethanesulfonic acid - HS-CoM coenzyme M, 2-mercaptoethanesulfonic acid - F430 Ni(II) tetrahydro-(12, 13)-corphin with a uroporphinoid (III) ligand skeleton - 13-epi-F430 and 12,13-di-epi-F430 the 12, 13- and 12, 13-derivatives of F430 - 12, 13-didehydro-F430 F430 oxidized at C-12 and C-13 - coenzyme F420 7,8-didemethyl-8-hydroxy-5-deazaflavin derivative - coenzyme F420H2 reduced coenzyme F420 - MV+ methylviologen semiquinone - HPLC high-performance liquid chromatography  相似文献   
5.
Abstract The effect of cadmium (Cd) on methane formation from methanol and/or H2–CO2 by Methanosarcina barkeri was examined in a defined growth medium and in a simplified buffer system containing 50 mM Tes with or without 2 mM dithiothreitol (DTT). No inhibition of methanogenesis by high concentrations of cadmium was observed in growth medium. Similarly, little inhibition of methanogenesis by whole cells in the Tes buffer system was observed in the presence of 430 μM Cd or 370 μM mercury (Hg) with 2 mM DTT. When the concentration of DTT was reduced to 0.4 mM, almost complete inhibition of methanogenesis from H2–CO2 and methanol by 600 μM Cd was observed. In the absence of DTT, 150 μM Cd inhibited methanogenesis from H2–CO2 completely and from methanol by 97%. Methanogenesis from H2–CO2 was more sensitive to Cd than that from methanol.  相似文献   
6.
Abstract A mass spectrometer with membrane inlet was used to study methanol metabolism by Methanosarcina barkeri strain MS. The addition of methanol to methanol grown culture samples in the mass spectrometer vessel stimulated methanogenesis and hydrogen production. The apparent K s for methanol was determined as 0.5 mM and the V max as 8.14 mmol g (dry weight) h−1. The V max for methane production was fairly constant during growth of the culture on methanol implying that growth is tightly coupled to methanogenesis. The addition of methanol to culture samples in the mass spectrometer vessel stimulated methanogenesis with no lag which indicated that methanogenesis can be uncoupled from growth. Exposure of the culture sample in the mass spectrometer vessel to an atmosphere of 2 kPa oxygen for 80 min resulted in a decrease in the rate of methanogenesis from methanol but on returning the atmosphere to nitrogen the addition of further methanol stimulated methanogenesis. The effect of other inhibitors of methanogenesis (2-bromoethane sulphonate and monensin); K j values 21.5 μM and 0.3 mM, respectively) were also studied.  相似文献   
7.
The electron donor (component B) to the methyl coenzyme M methylreductase system from Methanosarcina thermophila was isolated as the 7-methyl derivative and characterized. Gas chromatography-mass spectrometry and 1H NMR analyses identified this derivative as 7-methylthioheptanoylthreonine phosphate (CH3-S-HTP), indicating that the original component B had the same structure (HS-HTP) as previously determined for component B from Methanobacterium thermoautotrophicum. The heterodisulfide of HS-HTP and coenzyme M (HS-CoM, 2-mercaptoethanesulfonate) was enzymatically reduced in cell extracts using electrons supplied by either H2 or CO, confirming that HS-HTP was a functional molecule in M. thermophila.  相似文献   
8.
The conversion of methanol by cell-free extracts of the acetogenic bacterium Eubacterium limosum was studied. Incubation of mixed cell-free extracts of both E. limosum and Methanobacterium formicicum resulted in methane formation from methanol in the presence of ATP and 2-mercaptoethanesulfonic acid. The separate extracts were not able to perform this reaction. Addition of ferredoxin obtained from Methanosarcina barkeri to the mixed extracts resulted in increased methane formation. The enzyme, responsible for methanol binding in cell-free extract of E. limosum, was inactivated by FAD under N2 and exhibited maximal activity under an atmosphere of H2. This enzyme contains a firmly bound cobalamin which was methylated by methanol in the presence of ATP. It was demethylated in the presence of methylcobalamin: coenzyme M methyltransferase obtained from M. barkeri under concomitant formation of methylated coenzyme M. These properties are similar to those of methanol: 5-hydroxybenzimidazolylcobamide methyltransferase from M. barkeri. It was proposed that methylotrophic acetogens and methylotrophic methanogens use similar enzymes in the first step of methanol conversion.Abbreviations HS-CoM 2-mercaptoethanesulfonic acid - CH3S-CoM 2-(methylthio)ethanesulfonic acid - BrES 2-bromoethanesulfonic acid - TES N-tris(hydroxymethyl)-methyl-2-aminoethanesulfonic acid - MT1 methanol: 5-hydroxybenzimidazolylcobamide methyltransferase - MT2 methylcobalamin - HS-CoM methyltransferase - DMBI 5,6-dimethylbenzimidazole and HBI, 5-hydroxybenzimidazole, are -ligands of corrinoids - (S-CoM)2 2,2-dithiodiethanesulfonic acid  相似文献   
9.
Functional and structural properties of protoglobin from Methanosarcina acetivorans, whose Cys(101)E20 residue was mutated to Ser (MaPgb*), and of mutants missing either the first 20 N-terminal amino acids (MaPgb*-ΔN20 mutant), or the first 33 N-terminal amino acids [N-terminal loop of 20 amino acids and a 13-residue Z-helix, preceding the globin fold A-helix; (MaPgb*-ΔN20Z mutant)] have been investigated. In keeping with the MaPgb*-ΔN20 mutant crystal structure, here reported at 2.0 Å resolution, which shows an increased exposure of the haem propionates to the solvent, the analysis of ligand binding kinetics highlights high accessibility of ligands to the haem pocket in ferric MaPgb*-ΔN20. CO binding to ferrous MaPgb*-ΔN20 displays a marked biphasic behavior, with a fast binding process close to that observed in MaPgb* and a slow carbonylation process, characterized by a rate-limiting step. Conversely, removal of the first 33 residues induces a substantial perturbation of the overall MaPgb* structure, with loss of α-helical content and potential partial collapse of the protein chain. As such, ligand binding kinetics are characterized by very slow rates that are independent of ligand concentration, this being indicative of a high energy barrier for ligand access to the haem, possibly due to localized misfolding. This article is part of a Special Issue entitled: Oxygen Binding and Sensing Proteins.  相似文献   
10.
Reductive dechlorination of perchloroethylene and the role of methanogens   总被引:3,自引:0,他引:3  
Abstract Perchloroethylene (PCE) was reductively dechlorinated to trichloroethylene in a 10% anaerobic sewage sludge. About 80% of the initially added PCE (300 nmol) was dechlorinated within three weeks. The calculated rates were 250 nM and 445 nM · day−1 during the first and second weeks of incubation, respectively. The depletion of PCE varied in sludges obtained from different sources.
The role of methanogenesis in the dechlorination of PCE was evaluated by inhibiting the methanogens by addition of bromoethane sulfonic acid, a potent methanogenic inhibitor. Dechlorination of PCE was significantly inhibited in sludges amended with the inhibitor. Almost 41–48% less PCE was dechlorinated in sludges containing 5 mM BESA, indicating a relation between the two processes (methanogenesis and dechlorination). Direct proof that methanogens can transform chlorinated aliphatic compounds was obtained using axenic cultures of acetate-cleaving methanogens. Methanosarcina sp , originally isolated from a chlorophenol degrading consortium, showed significantly higher dechlorinating activity as compared to Ms. mazei . Based on these studies and other recently reported observations, it appears that methanogens/methanogenesis play an important role in the anaerobic dechlorination of chlorinated aliphatics such as PCE.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号