首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2010年   3篇
  2006年   1篇
  2004年   2篇
  1983年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
A series of water soluble molybdenocene complexes of general formula [(η5-C5H5)2Mo(L)]Cl2 (L=6-mercaptopurine (2), 6-mercaptopurine ribose (3), 2-amino-6-mercaptopurine (4), 2-amino-6-mercaptopurine ribose (5)) have been prepared by reacting Cp2MoCl2 (1) with the corresponding thionucleobase/thionucleoside in a (2:1) THF/MeOH solvent mixture. The complexes have been characterized by spectroscopic methods (NMR, UV-Vis, IR and MS). 1H NMR spectroscopic data (DMSO-d6) on the complexes suggest a S-Mo-N(7) coordination by the thionucleobase/thionucleoside. In buffer solution NMR data suggest that the thionucleobase/thionucleoside remains coordinated to molybdenum probably through S(6) and assisted by either N(7) or N(1) atoms. Intermediate species such as [Cp2Mo(η1-L)(H2O)]2+/1+ where the L is acting as monodentate ligand are possible in solution. Electrochemical characterization has also been pursued by cyclic voltammetry in DMSO and buffer solution. In DMSO, the complexes including the molybdenocene dichloride exhibit reversible redox behavior. On the other hand, in buffer solution, the oxidation process is irreversible for all the species.  相似文献   
2.
New C-ansa-zirconocene complexes containing methoxythiophenolate and mercaptophenolate ligands have been synthesized and characterized. The reaction of (HSC6H4-n-OMe) (n = 2, 3 or 4) with [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me2] (1) led to the formation of monosubstituted complexes [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Me(κ,S-SC6H4-n-OMe)] (= 2 (2); = 3 (3)) and the disubstituted complex [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}(κ,S-SC6H4-4-OMe)2] (4). The complexes [Zr{(R)HC(η5-C5Me4)(η5-C5H4)}(κ,O-OC6H4-4-SH)2] (R = t-Bu (6); R = CH2CHCH2 (7)) and [Zr(η5-C5H4)2(OC6H4-n-SH)2] (= 3 (9); = 4 (10)) have been synthesized using the corresponding dimethyl zirconocene and mercaptophenol. However, the reaction of [Zr{(t-Bu)HC(η5-C5Me4)(η5-C5H4)}Cl2] (11) with 4-mercaptophenol in the presence of NEt3 led to the formation of the first example of a homoleptic six-coordinate mercaptophenolate complex of zirconium, namely [HNEt3]2[Zr(κ,O-OC6H4-4-SH)6] (12). Complex 12 can be obtained in higher yield by the reaction of ZrCl4 with six equivalents of 4-mercaptophenol and NEt3. The reaction of 12 with [Zr(η5-C5H4)2Cl2] gave the unexpected disubstituted complex [Zr(η5-C5H4)2(OC6H4-4-SH)2] (10). The molecular structures of 4 and 12 have been determined by single-crystal X-ray diffraction studies.  相似文献   
3.
1,1′-Diethyl-2,2′,3,3′,4,4′,5,5′-octamethylferrocene has been utilized as a one-electron donor in the synthesis of a tetracyanoethylene charge-transfer salt, [Fe(C5EtMe4)2]+[TCNE]. Structural characterization shows that it adopts an arrangement of anions and cations completely different from the usual π stacking seen in analogous decamethylferrocenium compounds. The TCNE radical sits along side of the ferrocene, nearly perpendicular to the planes of the C5 rings. The nearly square geometry of the TCNE anion creates disorder over two orientations. [Fe(C5EtMe4)2]+[TCNE] is a simple paramagnet exhibiting neither long-range magnetic order nor slow paramagnetic relaxation to the lowest measured temperatures (ca. 1.8 K) as determined by both ac and dc magnetic susceptibility and Mössbauer spectroscopy (ca. 1.3 K).  相似文献   
4.
The intracellular distribution patterns of the metal atoms titanium and vanadium after in vivo as well as in vitro treatment of Ehrlich ascites tumor with the antitumor agents titanocene dichloride (TDC) or vanadocene dichloride (VDC) have been investigated by use of electron energy loss spectroscopy (EELS). The metals were found mainly accumulated in the nuclear heterochromatin and, to a minor extent, in the nucleolus and in the cytoplasmic ribosomes. In connection with other experimental results it is argued that this accumulation is indicative of the molecular interaction of the metal-containing species with the nucleic acids, especially with the DNA.  相似文献   
5.
Oxidative addition of 1-bromo-1H-indene to [Mo(CO)3(NCMe)3] and [W(CO)3(NCEt)3] is a suitable method for preparation of the indenyl compounds [IndMo(CO)3Br] and [IndW(CO)3Br], respectively. These products were fully characterised using spectroscopic methods. Structure of [IndW(CO)3Br] was determined by single crystal X-ray diffraction analysis.  相似文献   
6.
The reaction of metallocene complexes of the type [η5:C5H4-(CH2)n-C6H5]2MCl2 (n=1-5; M=Zr, Hf) with EtLi gives the mono nuclear ethyl derivatives [η5:C5H4-(CH2)n-C6H5]2M(Et)Cl and the metallacycles [η5:C5H4-(CH2)n-C6H5][η5:C5H4-(CH2)n1:C6H4]MEt. A large excess of EtLi affords the dinuclear species [η5:C5H4-(CH2)n6:C6H5]2M2Cl2 (n=2-5). All types of complexes can be activated with methylalumoxane (MAO) and then be used for catalytic polymerization of ethylene.  相似文献   
7.
Structural determinations and electrochemical properties in the series of multinuclear ferrocenyl-ethynyl complexes with formula [(η5-C5R5)(P2)MII-CC-(fc)n-CC-MII(P2)(η5-C5R5)] (fc = ferrocenyl; M = Fe(II), Ru(II), Os(II); R = H, CH3; P2 = Ph2PCH2CH2PPh2 (dppe), (C2H5)2PCH2CH2P(C2H5)2 (depe)) are reported. Complexes with more electron-rich ligand environment, such as [M(η5-C5R5)P2] (R = CH3 and P2 = dppe, depe), were also prepared with regard to the understanding of electronic coupling mechanism. Structural determinations confirm that the ferrocenyl group is directly linked to the ethynyl linkage which is linked to the pseudo-octahedral [(η5-C5R5)(P2)M] metal center. These complexes undergo sequential reversible oxidation events from 0.0 to 1.0 V referred to the Ag/AgCl electrode in anhydrous CH2Cl2 solution and the low-potential waves have been assigned to the two end-capped metallic centers. The magnitude of the electronic coupling between the two terminal metallic centers in the series of complexes was estimated by the electrochemical technique. Based on the correlation between the ΔE1/2 values and the second redox potentials of the end-capping metallic centers in the series of complexes, a qualitative explanation for the difference of the electronic coupling is given.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号