首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
  2015年   1篇
  2014年   1篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2007年   2篇
  2004年   1篇
排序方式: 共有9条查询结果,搜索用时 46 毫秒
1
1.
UBP10 encodes a deubiquitinating enzyme of Saccharomyces cerevisiae. Its inactivation results in a complex phenotype characterized by a subpopulation of cells that exhibits the typical cellular markers of apoptosis. Here, we show that additional deletion of YCA1, coding for the yeast metacaspase, suppressed the ubp10 disruptant phenotype. Moreover, YCA1 overexpression, without any external stimulus, had a detrimental effect on growth and viability of ubp10 cells accompanied by an increase of apoptotic cells. This response was completely abrogated by ascorbic acid addition. We also observed that cells lacking UBP10 had an endogenous caspase activity, revealed by incubation in vivo with FITC-labeled VAD-fmk. All these results argue in favour of an involvement of the yeast metacaspase in the active cell death triggered by loss of UBP10 function.  相似文献   
2.
The human protozoan parasite Leishmania major has been shown to exhibit several morphological and biochemical features characteristic of a cell death program when differentiating into infectious stages and under a variety of stress conditions. Although some caspase-like peptidase activity has been reported in dying parasites, no caspase gene is present in the genome. However, a single metacaspase gene is present in L. major whose encoded protein harbors the predicted secondary structure and the catalytic dyad histidine/cysteine described for caspases and other metacaspases identified in plants and yeast. The Saccharomyces cerevisiae metacaspase YCA1 has been implicated in the death of aging cells, cells defective in some biological functions, and cells exposed to different environmental stresses. In this study, we describe the functional heterologous complementation of a S. cerevisiae yca1 null mutant with the L. major metacaspase (LmjMCA) in cell death induced by oxidative stress. We show that LmjMCA is involved in yeast cell death, similar to YCA1, and that this function depends on its catalytic activity. LmjMCA was found to be auto-processed as occurs for caspases, however LmjMCA did not exhibit any activity with caspase substrates. In contrast and similarly to Arabidopsis thaliana metacaspases, LmjMCA was active towards substrates with arginine in the P1 position, with the activity being abolished following H147A and C202A catalytic site mutations. These results suggest that metacaspases are members of a family of peptidases with a role in cell death conserved in evolution notwithstanding possible differences in their catalytic activity.  相似文献   
3.
近年鉴定到Metacaspase、组织蛋白酶B、组织蛋白酶D、核酸酶(Endo G、Tatd、Fen-1)等分子参与了原虫的凋亡,但不清楚这些分子在凋亡信号途径中的位置及相互关系。实验结果显示,Metacaspase可能具有调节原虫凋亡与细胞周期等功能,但是Metacaspase与Caspase的活化方式及作用底物不同,提示原虫存在与多细胞动物不同的凋亡途径;在疟原虫及利什曼原虫中发现其线粒体及溶酶体参与了其凋亡,提示原虫可能具有类似哺乳动物的溶酶体-线粒体凋亡途径;在利什曼原虫和锥虫中发现存在通过核酸酶而不依赖Caspase的凋亡途径。阐明原虫的凋亡机制有助于通过设计新药物诱导原虫凋亡来达到治疗疾病的目的。  相似文献   
4.
Plant metacaspases (MCPs) are conserved cysteine proteases that have been postulated as regulators of programmed cell death (PCD). Although MCPs have been proven to have PCD relevant functions in multiple species ranging from fungi to plants, how these proteases are modulated in vivo remains unclear. Aside from demonstrating that these proteases are distinct from metazoan caspases due to their different target site specificities, how these proteases are used to tightly regulate cell death progression is a key question that remains to be resolved. Some recent studies on the biochemical characteristics of type-II MCP activities in Arabidopsis may begin to shed additional light on this aspect. The in vitro catalytic activities of recombinant AtMC4, AtMC5 and AtMC8 are found to be Ca2+-dependent while recombinant AtMC9 is active under mildly acidic conditions and not dependent on stimulation by Ca2+. Alterations of cellular pH and Ca2+ concentration commonly occur during various stresses and may help to orchestrate differential activation of latent MCPs under these conditions. Recent peptide mapping for recombinant AtMC4 (also called Metacaspase-2d) followed by site-specific mutagenesis studies have revealed multiple potential self-cleavage sites with the identification of a conserved lysine residue (Lys-225) as the key position for enzyme function both in vitro and in vivo. The multiple self-cleavage sites in MCPs may also facilitate desensitization of these proteases and can provide a means for fine-tuning their proteolytic activities in order to achieve more sensitive control of downstream processes.  相似文献   
5.

Background

Plagiochin E (PLE) is an antifungal active macrocyclic bis(bibenzyl) isolated from liverwort Marchantia polymorpha L. To elucidate the mechanism of action, previous studies revealed that the antifungal effect of PLE was associated with the accumulation of ROS, an important regulator of apoptosis in Candida albicans. The present study was designed to find whether PLE caused apoptosis in C. albicans.

Methods

We assayed the cell cycle by flow cytometry using PI staining, observed the ultrastructure by transmission electron microscopy, studied the nuclear fragmentation by DAPI staining, and investigated the exposure of phosphatidylserine at the outer layer of the cytoplasmic membrane by the FITC-annexin V staining. The effect of PLE on expression of CDC28, CLB2, and CLB4 was determined by RT-PCR. Besides, the activity of metacaspase was detected by FITC-VAD-FMK staining, and the release of cytochrome c from mitochondria was also determined. Furthermore, the effect of antioxidant L-cysteine on PLE-induced apoptosis in C. albicans was also investigated.

Results

Cells treated with PLE showed typical markers of apoptosis: G2/M cell cycle arrest, chromatin condensation, nuclear fragmentation, and phosphatidylserine exposure. The expression of CDC28, CLB2, and CLB4 was down-regulated by PLE, which may contribute to PLE-induced G2/M cell cycle arrest. Besides, PLE promoted the cytochrome c release and activated the metacaspase, which resulted in the yeast apoptosis. The addition of L-cysteine prevented PLE-induced nuclear fragmentation, phosphatidylserine exposure, and metacaspase activation, indicating the ROS was an important mediator of PLE-induced apoptosis.

Conclusions

PLE induced apoptosis in C. albicans through a metacaspase-dependent apoptotic pathway.

General significance

In this study, we reported for the first time that PLE induced apoptosis in C. albicans through activating the metacaspase. These results would conduce to elucidate its underlying antifungal mechanism.  相似文献   
6.
Hao L  Goodwin PH  Hsiang T 《Plant cell reports》2007,26(10):1879-1888
Metacaspases are cysteine proteinases that have homology to caspases, which play a central role in signaling and executing programmed cell death in animals. A type II metacaspase cDNA, NbMCA1, was amplified from Nicotiana benthamiana infected with Colletotrichum destructivum. It showed a peak in expression at 72 h post-inoculation corresponding with the switch to necrotrophy by C. destructivum. Inoculation of N. benthamiana with an incompatible bacterium, Pseudomonas syringae pv. tomato, which should induce a non-host hypersensitive response (HR), did not result in an increase in NbMCA1 expression at the time of necrosis development at 20–24 h postinoculation. Virus-induced silencing of NbMCA1 resulted in three to four times more lesions due to C. destructivum compared with leaves inoculated with the PVX vector without the cloned metacaspase gene or inoculated with water only. However, virus-induced silencing of NbMCA1 did not affect the HR necrosis or population levels of P. syringae pv. tomato. Although this metacaspase gene does not appear to be involved in the programmed cell death of non-host HR resistance to P. syringae, it does affect the susceptibility of N. benthamiana to C. destructivum indicating a function in a basal defense response. Possible roles of NbMCA1could be in degrading virulence factors of the pathogen, processing pro-proteins involved in stress responses, eliminating damaged proteins created during stress, and/or degrading proteins to remobilize amino acids to fuel de novo synthesis of proteins involved in stress adaptations.  相似文献   
7.
8.
9.
Programmed cell death (PCD) represents a significant component of normal growth and development in multicellular organisms. Recently, PCD-like processes have been reported in single-celled eukaryotes, implying that some components of the PCD machinery existed early in eukaryotic evolution. This study provides a comparative analysis of PCD-related sequences across more than 50 unicellular genera from four eukaryotic supergroups: Unikonts, Excavata, Chromalveolata, and Plantae. A complex set of PCD-related sequences that correspond to domains or proteins associated with all main functional classes—from ligands and receptors to executors of PCD—was found in many unicellular lineages. Several PCD domains and proteins previously thought to be restricted to animals or land plants are also present in unicellular species. Noteworthy, the yeast, Saccharomyces cerevisiae—used as an experimental model system for PCD research, has a rather reduced set of PCD-related sequences relative to other unicellular species. The phylogenetic distribution of the PCD-related sequences identified in unicellular lineages suggests that the genetic basis for the evolution of the complex PCD machinery present in extant multicellular lineages has been established early in the evolution of eukaryotes. The shaping of the PCD machinery in multicellular lineages involved the duplication, co-option, recruitment, and shuffling of domains already present in their unicellular ancestors. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号