首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3725篇
  免费   219篇
  国内免费   132篇
  4076篇
  2024年   9篇
  2023年   50篇
  2022年   111篇
  2021年   144篇
  2020年   153篇
  2019年   104篇
  2018年   106篇
  2017年   124篇
  2016年   146篇
  2015年   132篇
  2014年   249篇
  2013年   280篇
  2012年   175篇
  2011年   232篇
  2010年   194篇
  2009年   188篇
  2008年   206篇
  2007年   216篇
  2006年   169篇
  2005年   131篇
  2004年   132篇
  2003年   99篇
  2002年   63篇
  2001年   56篇
  2000年   66篇
  1999年   60篇
  1998年   51篇
  1997年   45篇
  1996年   43篇
  1995年   40篇
  1994年   45篇
  1993年   34篇
  1992年   29篇
  1991年   22篇
  1990年   16篇
  1989年   16篇
  1988年   11篇
  1987年   8篇
  1986年   13篇
  1985年   17篇
  1984年   17篇
  1983年   4篇
  1982年   14篇
  1981年   14篇
  1980年   9篇
  1979年   9篇
  1978年   4篇
  1976年   8篇
  1975年   3篇
  1974年   3篇
排序方式: 共有4076条查询结果,搜索用时 0 毫秒
1.
Nutrition plays a key role in many aspects of health and dietary imbalances are major determinants of chronic diseases including cardiovascular disease, obesity, diabetes and cancer. Adequate nutrition is particularly essential during critical periods in early life (both pre- and postnatal). In this regard, there is extensive epidemiologic and experimental data showing that early sub-optimal nutrition can have health consequences several decades later.  相似文献   
2.
3.
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg2+ or Mn2+ for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4–9-fold reductions in kcat/Km relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.  相似文献   
4.
Interpopulation hybridization can increase the viability of small populations suffering from inbreeding and genetic drift, but it can also result in outbreeding depression. The outcome of hybridization can depend on various factors, including the level of genetic divergence between the populations, and the number of source populations. Furthermore, the effects of hybridization can change between generations following the hybridization. We studied the effects of population divergence (low vs. high level of divergence) and the number of source populations (two vs. four source populations) on the viability of hybrid populations using experimental Drosophila littoralis populations. Population viability was measured for seven generations after hybridization as proportion of populations facing extinction and as per capita offspring production. Hybrid populations established at the low level of population divergence were more viable than the inbred source populations and had higher offspring production than the large control population. The positive effects of hybridization lasted for the seven generations. In contrast, at the high level of divergence, the viability of the hybrid populations was not significantly different from the inbred source populations, and offspring production in the hybrid populations was lower than in the large control population. The number of source populations did not have a significant effect at either low or high level of population divergence. The study shows that the benefits of interpopulation hybridization may decrease with increasing divergence of the populations, even when the populations share identical environmental conditions. We discuss the possible genetic mechanisms explaining the results and address the implications for conservation of populations.  相似文献   
5.
Metabolism at the cytosol–mitochondria interface and its regulation is of major importance particularly for efficient production of biopharmaceuticals in Chinese hamster ovary (CHO) cells but also in many diseases. We used a novel systems-oriented approach combining dynamic metabolic flux analysis and determination of compartmental enzyme activities to obtain systems level information with functional, spatial and temporal resolution. Integrating these multiple levels of information, we were able to investigate the interaction of glycolysis and TCA cycle and its metabolic control. We characterized metabolic phases in CHO batch cultivation and assessed metabolic efficiency extending the concept of metabolic ratios. Comparing in situ enzyme activities including their compartmental localization with in vivo metabolic fluxes, we were able to identify limiting steps in glycolysis and TCA cycle. Our data point to a significant contribution of substrate channeling to glycolytic regulation. We show how glycolytic channeling heavily affects the availability of pyruvate for the mitochondria. Finally, we show that the activities of transaminases and anaplerotic enzymes are tailored to permit a balanced supply of pyruvate and oxaloacetate to the TCA cycle in the respective metabolic states. We demonstrate that knowledge about metabolic control can be gained by correlating in vivo metabolic flux dynamics with time and space resolved in situ enzyme activities.  相似文献   
6.
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO→NO3→NO2→NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O2, NO2, and NO3 in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3, which was relieved upon O2 depletion. As cell growth depleted dissolved O2 levels, NO3 was converted to NO2 at near-stoichiometric levels, whereas NO2 consumption did not coincide with NO or NO3 accumulation. Assimilatory NO2 reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with ΔnirB, ΔnirS, and ΔnorC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.  相似文献   
7.
Meta‐analyses evaluating the association between the serotonin transporter polymorphism (5‐HTTLPR) with neuroticism and depression diagnosis as phenotypes have been inconclusive. We examined a gene–environment interaction on a cognitive vulnerability marker of depression, cognitive reactivity (CR) to sad mood. A total of 250 university students of European ancestry were genotyped for the 5‐HTTLPR, including SNP rs25531, a polymorphism of the long allele. Association analysis was performed for neuroticism, CR and depression diagnosis (using a self‐report measure). As an environmental pathogen, self‐reported history of childhood emotional abuse was measured because of its strong relationship with depression. Participants with the homozygous low expressing genotype had high CR if they had experienced childhood emotional maltreatment but low CR if they did not have such experience. This interaction was strongest on the Rumination subscale of the CR measure. The interaction was not significant with neuroticism or depression diagnosis as outcome measures. Our results show that 5‐HTTLPR is related to cognitive vulnerability to depression. Our findings provide evidence for a differential susceptibility genotype rather than a vulnerability genotype, possibly because of the relatively low levels of abuse in our sample. The selection of phenotype and environmental contributor is pivotal in investigating gene–environment interactions in psychiatric disorders.  相似文献   
8.
Abstract Granaticin, an isochromate quinone antibiotic is synthesized as a secondary metabolite by Streptomyces thermoviolaceus . Antibiotic productivity was investigated under a variety of cultural conditions, including complex and defined media, mesophilic and thermophilic temperatures and a variety of sole carbon sources. In a defined medium growth was supported, to varying extents, by different carbon sources and in most cases granaticin production was observed. Highest biomass and granaticin yields were obtained when cultures were grown in the presence of xylan, fructose, glutamate or proline as carbon source. Changes in pH during growth affected both the timing and extent of granaticin production.  相似文献   
9.
Dagmar Loske  Klaus Raschke 《Planta》1988,173(2):275-281
Gas exchange and contents of photosynthetic intermediates of leaves of Arbutus unedo L. were determined with the aim of recognizing the mechanisms of inhibition that were responsible for the midday depression of photosynthesis following exposure to dry air, and the decline in photosynthetic capacity following application of abscisic acid (ABA). Rapidly killed (<0.1 s) leaf samples were taken when gas analysis showed reduced CO2 assimilation. Determination of the contents of 3-phosphoglyceric acid (PGA), ribulose 1,5-bisphosphate (RuBP), triose phosphates, fructose 1,6-bisphosphate and hexose phosphates in the samples showed that significant variation occurred only in the level of PGA. As a result, the ratio PGA/RuBP decreased with increasing inhibition of photosynthesis, particularly when application of ABA had been the cause. A comparison of metabolite patterns did not bring out qualitative differences that would have indicated that effects of ABA and of dry air had been caused by separate mechanisms. Depression of photosynthesis occurred in the presence of sufficient RuBP which indicated that the carboxylation reaction of the carbon-reduction-cycle was inhibited after application of ABA or exposure to dry air.Abbreviations and symbols ABA abscisic acid - C a partial pressure of CO2 in the ambient air - C i partial pressure of CO2 in the intercellular spaces - I quantum flux - PGA 3-phosphoglyceric acid - RuBP ribulose 1,5-bisphosphate - I L leaf temperature - w water-vapor pressure difference between leaf and air  相似文献   
10.
The effect of NAD(P) and analogs of this nucleotide on nitrogenase activity in Rhodospirillum rubrum has been studied. Addition of NAD+ to nitrogen fixing Rsp. rubrum leads to inhibition of nitrogenase. NADP+ has the same effect but NADH or analogs modified in the nicotinamide portion do not cause inhibition. In contrast to ammonium ions, addition of NAD+ leads to inhibition of nitrogenase in cells that have been N-starved under argon. The inhibitory effect of NAD+ is more pronounced at lower light intensities. Addition of NAD+ also leads to inhibition of glutamine synthetase, a phenomenon also occurring when “switchoff” is produced by the addition of effectors such as ammonium ions or glutamine. It is also shown that NAD+ is taken up by Rsp. rubrum cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号