首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   1篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2014年   5篇
  2013年   18篇
  2012年   9篇
  2011年   9篇
  2010年   7篇
  2009年   10篇
  2008年   12篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   13篇
  2003年   15篇
  2002年   10篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   7篇
  1995年   3篇
  1994年   5篇
  1993年   1篇
  1992年   3篇
  1991年   5篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   6篇
  1986年   1篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1982年   11篇
  1981年   13篇
  1980年   5篇
  1979年   7篇
  1978年   10篇
  1977年   6篇
  1976年   1篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
  1972年   3篇
  1971年   2篇
排序方式: 共有271条查询结果,搜索用时 390 毫秒
1.
Polypeptides of the Golgi Apparatus of Neurons from Rat Brain   总被引:4,自引:0,他引:4  
An antiserum was raised against fractions of the Golgi apparatus of neurons from rat brain. Immunoblots of these fractions with the antiserum showed two principal bands of 185 and 150 kilodaltons (kd) in apparent molecular mass. The antiserum reacted with five or six bands of 200, 150, 130, 100-110, 64, and 40 kd in apparent molecular mass in immunoblots of several crude brain membrane fractions. Affinity-purified antibodies from the different gel bands transferred to nitrocellulose paper were used in immunoblot and immunocytochemical studies. Antibodies eluted from the 200-, 150-, 100-110-, and 64-kd bands reacted not only with the corresponding band but also with the other three bands. Antibodies eluted from the 40-kd band stained only the corresponding band. On light and/or electron microscopic immunocytochemistry, the antiserum stained the Golgi apparatus of rat neurons, glia, liver, and kidney tubule cells. Weaker, segmented, and less consistent staining was observed in nuclear envelopes, rough endoplasmic reticulum, and plasma membranes of neurons. Antibodies eluted from the bands at 200, 150, 100-110, and 64 kd stained intermediate cisterns of the Golgi apparatus of neurons. These findings suggest that a group of related polypeptides of brain membranes is preferentially expressed or enriched in the Golgi apparatus of neurons. Polypeptides with apparent molecular masses of 185 and 150 kd probably represent moieties endogenous to membranes of the neuronal Golgi apparatus.  相似文献   
2.
Summary The hairs (stereocilia = stereovilli) of sensory cells from the inner ear of vertebrates are interconnected by several types of connectors, whose role is unknown. They appear to stabilize the hair bundle mechanically, and may be directly involved in mechano-electric transduction. Our transmission electron-microscopical investigation of sensory epithelia from two species of fish (Rutilus rutilus, Scardinius erythrophthalmus, both Leuciscidae) has shown that not only the connectors but also the surface charges of the membrane are important factors for determining the shape of the hair bundle and the spatial interrelation of the stereovilli. A reduction of the ionic strength in the medium leads to an increase in distance between the stereovilli. This may be the result of an extension of the spread of the surface potential of the membrane at low ionic strength. The connectors are not broken by the increase in distance between the stereovilli. They are EDTA (ethylene-diamine-tetra-acetic-acid) resistant as are some cell adhesion molecules such as N-CAM (nerve-cell adhesion molecule) and protein A from Dictyostelium discoideum. The connectors do not prevent polycation-induced fusion of adjacent stereovillar membranes.  相似文献   
3.
Cells from the slime variant of Neurospora crassa were broken in isotonic conditions by use of triethanolamine buffer plus EDTA. After removal of large membranous structures by low-speed centrifugation, chitosomes and secretory vesicles were separated by means of gel filtration, precipitation of membranous contaminants with Concanavalin A, and centrifugation in sucrose or glycerol gradients. Polypeptidic composition of fractions enriched in secretory vesicles or chitosomes was found to be distinct. By these criteria we concluded that chitosomes and secretory vesicles represent different populations of microvesicles. Both microvesicular populations appeared free of endoplasmic reticulum and vacuolar contaminants as demonstrated by determination of appropriate enzymatic markers.Abbreviations ER Endoplasmic reticulum - UDP-GlcNAc uridine-5-diphosphate N-acetyl glucosamine - GlcNAc N-acetyl glucosamine - SDS sodium dodecyl sulfate - PMSF phenyl methyl sulfonyl fluoride - EDTA ethylene diamino tetraacetic acid Investigador Nacional de Mexico. On leave from the Centro de Investigacion y Estudios Avanzados (IPN), and the Universidad de Guanajuato, Gto., Mexico  相似文献   
4.
Chromatophores, membrane vesicles with the capacity of cyclic photophosphorylation, have been isolated from Rhodospirillum rubrum cells on a pilot plant scale. Results of disintegration in a glass bead mill and in a high pressure homogenizer were compared. The chromatophores were isolated from the crude extract by extraction in aqueous two-phase systems. In systems of polyethylene glycol (PEG) and dextran the chromatophores were partitioned to the upper PEG phase by the addition of PEG-palmitate. Most of the proteins and nucleic acids were forced to the bottom phase by addition of sodium chloride. Methods to prevent precipitation of the chromatophores were studied.  相似文献   
5.
Neuraminidase in Calf Retinal Outer Segment Membranes   总被引:1,自引:1,他引:0  
Abstract: An enzyme catalyzing the hydrolysis of sialic acid ( N -acetylneuraminic acid: NeuNAc)-containing glycoconjugates has been found in bovine retinal rod outer segment (ROS) membranes. The enzymatic activity is optimal at pH 4.0 and is stimulated by 0.15% Triton X-100. Total activity was determined by the release of NeuNAc from endogenous and exogenous substrates (GDla). The ROS enzyme preferentially hydrolyses the ROS gangliosides, possibly because they are more accessible than the glycoproteins as substrates for the neuraminidase. Release of NeuNAc from gangliosides leads to important changes in the ganglioside patterns; whereas the amounts of GM1 increased throughout the incubation, the levels of polysialogangliosides GTlb and GD3 diminished owing to their rapid hydrolysis. The finding that gangliosides are hydrolysed more extensively than glycoproteins suggests that endogenous ROS gangliosides may be the principal source of metabolically available sialic acid in ROS. It was also observed that the activity of ROS neuraminidase is not affected by illumination of the membranes.  相似文献   
6.
Polynuclear aromatic hydrocarbons (PAH), some of which are potent carcinogens, are common environmental pollutants. The transport processes for these hydrophobic compounds into cells and between intracellular membranes are diverse and are not well understood. A common mechanism of transport is by spontaneous desorption and transfer through the aqueous phase. From the partitioning parameters, we have inferred that the rate limiting step involves solvation of the transfer species in the interfacial water at the phospholipid surface. Transfer of 10 PAH (pyrene, 3,4-benzophenanthrene, triphenylene, chrysene, 1,2-benzanthracene, 1,1'-binaphthyl, 9-phenylanthracene, 2,2'-binaphthyl, m-tetraphenyl and 1,3,5-triphenylbenzene) out of phosphatidylcholine vesicles has been examined. Our results show that the molecular volume of the PAH is a rate-determining factor. Moreover, high performance liquid chromatography (HPLC) data confirms the hypothesis that the rate of transfer is correlated with the size of the molecule and with the partitioning of the molecule between a polar and hydrocarbon phase. The kinetics and characteristics of the spontaneous transfer of carcinogens are likely to have a major impact on the competitive processes of PAH metabolism within cells.  相似文献   
7.
Vanadate-stimulated oxidation of NAD(P)H   总被引:1,自引:0,他引:1  
Vanadate stimulates the oxidation of NAD(P)H by biological membranes because such membranes contain NAD(P)H oxidases which are capable of reducing dioxygen to O2 and because vanadate catalyzes the oxidation of NAD(P)H by O2, by a free radical chain mechanism. Dihydropyridines, such as reduced nicotinamide mononucleotide (NMNH), which are not substrates for membrane-associated NAD(P)H oxidases, are not oxidized by membranes plus vanadate unless NAD(P)H is present to serve as a source of O2. When [NMNH] greatly exceeds [NAD(P)H], in such reaction mixtures, one can observe the oxidation of many molecules of NMNH per NAD(P)H consumed. This reflects the chain length of the free radical chain mechanism. We have discussed the mechanism and significance of this process and have tried to clarify the pertinent but confusing literature.  相似文献   
8.
The localization of the dissimilatory sulfite reductase in Desulfovibrio desulfuricans strain Essex 6 was investigated. After treatment of the cells with lysozyme, 90% of the sulfite reductase activity was found in the membrane fraction, compared to 30% after cell rupture with the French press. Sulfite reductase was purified from the membrane (mSiR) and the soluble (sSiR) fractiion. On SDS-PAGE, both mSiR and sSiR exhibited three bands at 50, 45 and 11 kDa, respectively. From their UV/VIS properties (distinct absorption maxima at 391, 410, 583, 630 nm, enzymes as isolated) and the characteristic red fluorescence in alkaline solution, mSiR and sSiR were identified as desulfoviridin. Sulfite reductase (HSO3 -H2S) activity was reconstituted by coupling of mSiR to hydrogenase and cytochrome c 3 from D. desulfuricans. The specific activity of mSiR was 103 nmol H2 min-1 mg-1, and sulfide was the major product (72% of theoretical yield). No coupling was found with sSiR under these conditions. Furthermore, carbon monoxide was used to diferentiate between the membrane-bound and the soluble sulfite reductase. In a colorimetric assay, with photochemically reduced methyl viologen as redox mediator, CO stimulated the activity of sSiR significantly. CO had no effect in the case of mSiR. These studies documented that, as isolated, both forms of sulfite reductase behaved differently in vitro. Clearly, in D. desulfuricans, the six electron conversion HSO3 -H2S was achieved by a membranebound desulfoviridin without the assistance of artificial redox mediators, such as methyl viologen.Abbreviations SiR sulfite reductase - mSiR sulfite reductase purified from membranes - sSiR sulfite reductase purified from the soluble fraction Enzymes Sulfite reductase, EC 1.8.99.1 Cytochrome c 3 hydrogenase, EC 1.12.2.1  相似文献   
9.
Martha J. Powell 《Protoplasma》1994,181(1-4):123-141
Summary In development of the primitive fungi, chytridiomycetes, unwalled zoospores bearing single, posterior flagella are transformed into walled, round-cells which elaborate the thallus. Production, structural modification, or release of extracellular material are involved with each transition of developmental stage. This article reviews the variety and developmental changes of extracellular materials found at the cell surface of chytridiomycetes. A cell coat, produced from Golgi-derived vesicles during zoosporogenesis, is visible around free swimming zoospores of some chytridiomycetes. How the zoospore surface receives and transduces signals is not widely explored, but it is known that fenestrated cisternae and simple cisternae, which are integrated into the microbody-lipid globule complex, are spatially and structurally associated with the plasma membrane and flagellar apparatus. This spatial association, as well as the cytochemical localization of calcium in fenestrated cisternae, suggest a mechanism for signal transduction and for regulation of zoospore motility. Zoospores become encased in a new layer of extracellular material as the zoospore encysts. Among some chytrids the source of this material is preexisting vesicles which fuse with the plasma membrane. Among other zoospores, a readily identifiable population of encystment vesicles is not apparent, demonstrating that there is no single pattern or mechanism for zoospore encystment in chytridiomycetes. Encysted zoospores developing into thalli, typically produce cell walls with a microfibrillar substructure. Ultrastructural analysis of walls reveals distinctive architecture and remarkable sculpturing which have been used in systematics of some members of chytridiomycetes. Nothing is known as to underlying controls of cytoskeletal elements and plasma membrane enzyme complexes in wall biogenesis. Many changes in cell surface structures accompany thallus maturation. Septa, many traversed with plasmodesmata, are produced in most chytrid thallus types. As sporangia and resting spores prepare for the production and release of zoospores, additional extracellular layers of material are frequently produced. Polarized deposits of extracellular material become discharge plugs, discharge vesicles, or endoopercula. Interstitial material is also released into cleavage furrows. Circumscissile or localized digestion of walls produce operculate or inoperculate exit ports for zoospore release. Cryofixation preserves more extensive extracellular material than does conventional chemical fixation, and broader application of cryofixation may radically alter our current view of cell surface structure. Thus chytridiomycetes exhibit a range in patterns for the occurrence and subsequent modifications of extracellular materials, even for members within the same order. The most universally recognized role for these extracellular materials is protection. Although there is a reasonable view of the types of extracellular material involved in chytridiomycete development, we have only limited understandings of their biogenesis or roles in regulation and communication, areas awaiting more investigations.Abbreviations DIC Nomarski-differential contrast optics - TEM transmission electron microscopy  相似文献   
10.
Summary The cortical cell membranes of maize and marrow roots grown at normal, or chilling, temperatures have been studied by freeze-fracture electron microscopy. Using computer-assisted methods to analyse intramembraneous particle (IMP) frequencies, diameters and distribution, no significant trends in differences between normal and chilled roots were found. While this result does not correspond with the findings from similar experiments on microorganisms, it is compatible with contemporary ideas concerning temperature-induced phase transitions in the lipids of higher plant cell membranes. The cortical cell membranes of barley roots that had been subjected to cold osmotic shock also showed no differences from untreated roots as demonstrable in freeze-fracture replicas.IMPs were found to cluster around plasmodesmata after chilling but the physiological significance of this, if any, remains to be investigated further.While these negative results only indirectly help towards understanding how cell membranes react to chilling, the techniques described open the way for more detailed analyses of IMP characteristics in plant cell membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号