首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  2018年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2007年   1篇
  2003年   1篇
  2002年   2篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Four prenylated acetophenones 2,6-dihydroxy-4-geranyloxyacetophenone (1), 4-geranyloxy-2,6,β-trihydroxyacetophenone (2), 2,6-dihydroxy-4-geranyloxy-3-prenylacetophenone (3), and 4-geranyloxy-3-prenyl-2,6,β-trihydroxyacetophenone (4) have for the first time been isolated from Melicope obscura (1 and 2) and Melicope obtusifolia ssp. obtusifolia var. arborea (3 and 4). The distribution of prenylated acetophenones in Rutaceae is reviewed and the results, including the new records, indicate that prenylated acetophenones are valuable as chemotaxonomic markers for the subfamily Rutoideae, tribe Xanthoxyleae sensu Engler.  相似文献   
2.
Three new natural products, 3,8-dimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone, 3,6,8-trimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone and 3,6,8,3′,4′-pentamethoxy-5,7-dihydroxyflavone were isolated from Melicope coodeana syn. Euodia simplex (Rutaceae) along with 3,6,3′-trimethoxy-5,7,4′-trihydroxyflavone and 3,3′-dimethoxy-5,7,4′-trihydroxyflavone. The structural assignments are based on 1H and 13C NMR data, including discussion of the chemical shifts of C-2 in 3,5-dihydroxy- and 3-methoxy-5-hydroxyflavones. The presence of highly methoxylated and methylenedioxyflavones is characteristic of the genus Melicope, and the present findings support the recent transfer of Euodia simplex to Melicope.  相似文献   
3.
Aim Pacific biogeographical patterns in the widespread plant genus Melicope J.R. Forst. & G. Forst. (Rutaceae) were examined by generating phylogenetic hypotheses based on chloroplast and nuclear ribosomal sequence data. The aims of the study were to identify the number of colonization events of Melicope to the Hawaiian Islands and to reveal the relationship of Hawaiian Melicope to the Hawaiian endemic genus Platydesma H. Mann. The ultimate goal was to determine if the Hawaiian Islands served as a source area for the colonization of Polynesia. Location Nineteen accessions were sampled in this study, namely eight Melicope species from the Hawaiian Islands, four from the Marquesas Islands, one species each from Tahiti, Australia and Lord Howe Island, two Australian outgroups and two species of the Hawaiian endemic genus Platydesma. To place our results in a broader context, 19 sequences obtained from GenBank were included in an additional analysis, including samples from Australia, Papua New Guinea, New Zealand, Southeast Polynesia and Asia. Methods DNA sequences were generated across 19 accessions for one nuclear ribosomal and three chloroplast gene regions. Maximum parsimony analyses were conducted on separate and combined data sets, and a maximum likelihood analysis was conducted on the combined nuclear ribosomal and chloroplast data set. A broader nuclear ribosomal maximum parsimony analysis using sequences obtained from GenBank was also performed. Geographic areas were mapped onto the combined chloroplast and nuclear ribosomal tree, as well as onto the broader tree, using the parsimony criterion to determine the dispersal patterns. Results Phylogenetic analyses revealed that Platydesma is nested within Melicope and is sister to the Hawaiian members of Melicope. The Hawaiian Melicope + Platydesma lineage was a result of a single colonization event, probably from the Austral region. Finally, Marquesan Melicope descended from at least one, and possibly two, colonization events from the Hawaiian Islands. Main conclusions These data demonstrate a shifting paradigm of Pacific oceanic island biogeography, in which the patterns of long‐distance dispersal and colonization in the Pacific are more dynamic than previously thought, and suggest that the Hawaiian Islands may act as a stepping stone for dispersal throughout the Pacific.  相似文献   
4.
5.
We screened more than 60 Malaysian plants against two species of insects and found that Melicope subunifoliolata (Stapf) T.G. Hartley (Rutaceae) showed strong feeding deterrent activity against Sitophilus zeamais Motsch. (Curculionidae) and very good larvicidal activity against Aedes aegypti L. (Diptera). One anti-insect compound, meliternatin (3,5-dimethoxy-3',4',6,7-bismethylendioxyflavone) (6) and six other minor polyoxygenated flavones were isolated from M. subunifoliolata.  相似文献   
6.
The treatment of Rutaceae in the Chinese flora chose to follow Engler in recognizing Rutoideae and Toddalioideae as two separate subfamilies. Morphological and chemical comparisons, however, suggested grouping those two subfamilies in one subfamily, Rutoideae. This move has received support from molecular phylogenetic analyses, which also showed that the Chinese taxa in Euodia should be placed in Tetradium and Melicope following Hartley. Investigations into the chemistry and molecular phylogeny of Murraya also indicated that the species in the section Bergera without yuehchukene should be removed from Murraya. These findings clearly show the value of molecular cladistics to the taxonomy of Rutaceae in China and also directions for further investigations.  相似文献   
7.
The bark extract of Melicope subunifoliolata (Stapf) T.G. Hartley showed competitive muscarinic receptor binding activity. Six polymethoxyflavones [melibentin (1); melisimplexin (3); 3,3',4',5,7-pentamethoxyflavone (4); meliternatin (5); 3,5,8-trimethoxy-3',4',6,7-bismethylenedioxyflavone (6); and isokanugin (7)] and one furanocoumarin [5-methoxy-8-geranyloxypsoralen (2)] were isolated from the bark extract. Compounds 2 and 6 were isolated for the first time from M. subunifoliolata. The methoxyflavones (compounds 1, 3, 4, 5, 6, and 7) show moderate inhibition in a muscarinic receptor binding assay, while the furanocoumarin (compound 2) is inactive. The potency of the methoxyflavones to inhibit [(3)H]NMS-muscarinic receptor binding is influenced by the position and number of methoxy substitution. The results suggest these compounds are probably muscarinic modulators, agonists or partial agonists/antagonists.  相似文献   
8.
The genus Melicope (Rutaceae) occurs on most Pacific archipelagos and is perfectly suited to study Pacific biogeography. The main goal was to infer the age, geographic origin and colonization patterns of Melicope and its relatives. We sequenced three nuclear and two plastid markers for 332 specimens that represent 164 species in 16 genera of Rutaceae. Phylogenetic reconstruction, molecular dating, ancestral area reconstruction and diversification analyses were carried out. The two main clades (Acronychia‐Melicope and Euodia) originated in Australasia and their crown ages are dated to the Miocene. Diversification rates differed among the subclades and were lowest in the Euodia lineage and highest in the Hawaiian Melicope lineage. The Malagasy and Mascarene species form a clade, which split from its SE Asian relatives in the Pliocene/Pleistocene. At least eight colonizations to the Pacific islands occurred. The timing of all colonizations except for the Hawaiian group is congruent with age of the island ages. Australia, New Guinea and New Caledonia have been the source of colonizations into the Pacific islands in the Melicope clade. Melicope shows high dispersability and has colonized remote archipelagos such as the Austral and Marquesas Islands each twice. Colonization of islands of the Hawaiian‐Emperor seamount chain likely predates the ages of the current main islands, and the initial colonization to Kaua'i occurred after the splitting of the Hawaiian lineage into two subclades. Wider ecological niches and adaptations to bird‐dispersal likely account for the much higher species richness in the Acronychia‐Melicope clade compared to the Euodia clade.  相似文献   
9.
Three new natural products, 3,8-dimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone, 3,6,8-trimethoxy-5,7-dihydroxy-3′,4′-methylenedioxyflavone and 3,6,8,3′,4′-pentamethoxy-5,7-dihydroxyflavone were isolated from Melicope coodeana syn. Euodia simplex (Rutaceae) along with 3,6,3′-trimethoxy-5,7,4′-trihydroxyflavone and 3,3′-dimethoxy-5,7,4′-trihydroxyflavone. The structural assignments are based on 1H and 13C NMR data, including discussion of the chemical shifts of C-2 in 3,5-dihydroxy- and 3-methoxy-5-hydroxyflavones. The presence of highly methoxylated and methylenedioxyflavones is characteristic of the genus Melicope, and the present findings support the recent transfer of Euodia simplex to Melicope.  相似文献   
10.
Two novel zierane‐type sesquiterpenes, named melicodenones A and B ( 1 and 2 , resp.), and three new guaiane‐type sesquiterpenes, named melicodenones C–E ( 3 – 5 ), were isolated from the root of Melicope denhamii (Seem. ) T. G. Hartley together with zierone ( 6 ). Their structures were established by extensive NMR‐spectroscopic analyses. Compounds 1 – 6 were tested for cytotoxicity using human colon cancer DLD‐1 cells, and melicodenone A ( 1 ) was found to exhibit moderate activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号