首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  2014年   1篇
  2013年   9篇
  2012年   3篇
  2011年   1篇
  2008年   1篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
《Chronobiology international》2013,30(6):1090-1119
It is well known that clocks are present in brain regions other than the suprachiasmatic nucleus and in many peripheral tissues. In the teleost, Danio rerio, peripheral oscillators can be directly synchronized by light. Danio rerio ZEM-2S embryonic cells respond to light with differential growth: cells kept in constant light exhibited a strong inhibition of proliferation, whereas in cells kept in light:dark (LD) cycles (14L:10D and 10L:14D) or in constant darkness (DD), the doubling times were not statistically different. We demonstrated by RT-PCR followed by PCR that ZEM-2S cells express two melanopsins, Opn4x and Opn4m, and the six Cry genes. The presence of the protein OPN4x was demonstrated by immunocytochemistry. The pattern of temporal expression of the genes Opn4x, Per1, Cry1b, and Clock was studied in ZEM-2S cells kept for five days in 12L:12D or DD. In 12L:12D, the clock genes Per 1 and Cry1b exhibited robust circadian expression, while Opn4x and Clock expression seemed to vary in an ultradian pattern. Both Per1 and Cry1b genes had higher expression during the L phase; Clock gene had an increase in expression coincident with the D phase, and during the subjective night. In DD, the temporal variation of Per1 and Cry1b genes was greatly attenuated but not extinguished, and the higher expressions were shifted to the transition times between subjective day and night, demonstrating that Per and Cry1b were synchronized by the LD cycle. Clock and Opn4x kept the ultradian oscillation, but the rhythm was not statistically significant. As endothelins (ET) have been reported to be a potent stimulator of Per genes in rodents, we investigated the effect of endothelin on ZEM-2S cells, which express ETA receptors. Cells were kept in 12D:12L for five days, and then treated with 10???11 to 10???8M ET-1 for 24?h. ET-1 exhibited a biphasic effect on Opn4x expression. At 10???11M, the hormone exerted a highly significant stimulation of Opn4x expression during the L phase and introduced a circadian oscillatory pattern. At 10???10M, a significant increase was seen at ZT21 and ZT0 (i.e., at the end of the D phase and beginning of the L phase), whereas 10???9 and 10???8M ET-1 inhibited the expression of Opn4x at most ZTs. Clock expression was unaffected by 10???8M ET-1; however, in the presence of lower concentrations, the expression was enhanced at some ZTs, strengthening the ultradian oscillation. ET-1 at 10???11 and 10???10M had no effect on Per1 circadian expression; however, 10???9 and 10???8M ET-1 reduced the amplitude of Per1 expression in the beginning of the L phase. ET-1 effects were less evident on Cry 1b. For both genes, the reduction in expression was not sufficient to abolish the circadian oscillatory pattern. Based on these results and data in the literature, a link between ET-1 stimulation of ETA receptors may be established by E4BP4 binding to the promoters and consequent inhibition of gene expression. (Author correspondence: )  相似文献   
2.
《Chronobiology international》2013,30(9-10):1762-1777
The short-wavelength (blue) light sensitivity of human circadian, neurobehavioral, neuroendocrine, and neurophysiological responses is attributed to melanopsin. Whether melanopsin is the sole factor in determining the efficacy of a polychromatic light source in driving nonvisual responses, however, remains to be established. Monochromatic (λmax 437, 479, and 532?nm administered singly and in combination with 479?nm light) and polychromatic (color temperature: 4000 K and 17000 K) light stimuli were photon matched for their predicted ability to stimulate melanopsin, and their capacity to affect nocturnal melatonin levels, auditory reaction time, and subjective alertness and mood was assessed. Young, healthy male participants aged 18–35 yrs (23.6?±?3.6 yrs [mean?±?SD]; n?=?12) participated in 12 overnight sessions that included an individually timed 30-min nocturnal light stimulus on the rising limb of the melatonin profile. At regular intervals before, during, and after the light stimulus, subjective mood and alertness were verbally assessed, blood samples were taken for analysis of plasma melatonin levels, and an auditory reaction time task (psychomotor vigilance task; PVT) was performed. Proc GLM (general linear model) repeated-measures ANOVA (analysis of variance) revealed significantly lower melatonin suppression with the polychromatic light conditions (4000 and 17000 K) compared to the “melanopsin photon-matched” monochromatic light conditions (p?<?.05). In contrast, subjective alertness was significantly lower under the 479?nm monochromatic light condition compared to the 437 and 532?nm monochromatic and both polychromatic light conditions. The alerting responses more reflected the total photon content of the light stimulus. The demonstration that the melatonin suppression response to polychromatic light was significantly lower than predicted by the melanopsin photosensitivity function suggests this function is not the sole consideration when trying to predict the efficacy of broadband lighting. The different spectral sensitivity of subjective alertness and melatonin suppression responses may imply a differential involvement of the cone photopigments. An analysis of the photon densities in specific wavelength bands for the polychromatic lights used in this and the authors' previous study suggests the spectral composition of a polychromatic light source, and particularly the very short-wavelength content, may be critical in determining response magnitude for the neuroendocrine and neurobehavioral effects of nocturnal light. (Author correspondence: )  相似文献   
3.
Examples are presented of nocturnal animals becoming diurnal or vice versa as a result of mutations, genetic manipulations, or brain lesions. Understanding these cases could give insight into mechanisms employed when switches of temporal niche occur as part of the life cycle, or in response to circumstances such as availability of food. A two-process account of niche switching is advocated, involving both a change in clock-controlled outputs and a change in the direct response to light (i.e. masking). An emerging theme from this review is the suggestion that retinal inputs have a greater role in switching than suspected previously.  相似文献   
4.
Synchronization of an internal clock (entrainment) and a direct response to light (masking) are complementary ways of restricting activity of an animal to day or night. The protein CLOCK has an important role in the oscillatory mechanism of mammalian pacemakers. Our data show that it is also involved in masking responses. Mice with the Clock/Clock mutation reduced their wheel running less than wildtypes when given 1-h light pulses of light (2–1,600 lx) in the night. With dimmer lights (<2 lx), there were no significant differences between mutant and wildtype mice. Impaired masking responses to light in Clock/Clock mice were confirmed in tests with ultradian light–dark cycles (3.5:3.5 h and 1:1 h). Tests with pulses of light longer than 1 h revealed that, although the mutants responded more slowly to light, they sustained the suppression of activity over the course of the 3-h tests better than wildtypes.  相似文献   
5.
Melanopsin is the photopigment of mammalian intrinsically photosensitive retinal ganglion cells, where it contributes to light entrainment of circadian rhythms, and to the pupillary light response. Previous work has shown that the melanopsin photocycle is independent of that used by rhodopsin (Tu, D. C., Owens, L. A., Anderson, L., Golczak, M., Doyle, S. E., McCall, M., Menaker, M., Palczewski, K., and Van Gelder, R. N. (2006) Inner retinal photoreception independent of the visual retinoid cycle. Proc. Natl. Acad. Sci. U.S.A. 103, 10426-10431). Here we determined the ability of apo-melanopsin, formed by ex vivo UV light bleaching, to use selected chromophores. We found that 9-cis-retinal, but not all-trans-retinal or 9-cis-retinol, is able to restore light-dependent ipRGC activity after bleaching. Melanopsin was highly resistant to both visible-spectrum photic bleaching and chemical bleaching with hydroxylamine under conditions that fully bleach rod and cone photoreceptor cells. These results suggest that the melanopsin photocycle can function independently of both rod and cone photocycles, and that apo-melanopsin has a strong preference for binding cis-retinal to generate functional pigment. The data support a model in which retinal is continuously covalently bound to melanopsin and may function through a reversible, bistable mechanism.  相似文献   
6.
In addition to rods and cones, the mammalian eye contains a third class of photoreceptor, the intrinsically photosensitive retinal ganglion cell (ipRGC). ipRGCs are heterogeneous irradiance-encoding neurons that primarily project to non-visual areas of the brain. Characteristics of ipRGC light responses differ significantly from those of rod and cone responses, including depolarization to light, slow on- and off-latencies, and relatively low light sensitivity. All ipRGCs use melanopsin (Opn4) as their photopigment. Melanopsin resembles invertebrate rhabdomeric photopigments more than vertebrate ciliary pigments and uses a G(q) signaling pathway, in contrast to the G(t) pathway used by rods and cones. ipRGCs can recycle chromophore in the absence of the retinal pigment epithelium and are highly resistant to vitamin A depletion. This suggests that melanopsin employs a bistable sequential photon absorption mechanism typical of rhabdomeric opsins.  相似文献   
7.
Negative masking of locomotor activity by light in nocturnal rodents is mediated by a non-image-forming irradiance-detection system in the retina. Structures receiving input from this system potentially contribute to the masking response. The suprachiasmatic nucleus (SCN) regulates locomotor activity and receives dense innervation from the irradiance-detection system via the retinohypothalamic tract, but its role in masking is unclear. We studied masking in adult Syrian hamsters (Mesocricetus auratus) with electrolytic lesions directed at the SCN. Hamsters were exposed to a 3.5:3.5 ultradian light/dark cycle and their wheel-running activity was monitored. Intact hamsters showed robust masking, expressing less than 20% of their activity in the light even though light and dark occurred equally during their active times. In contrast, hamsters with lesions showed, on average, as much activity in the light as in the dark. Tracing of retinal projections using cholera toxin subunit showed that the lesions damaged retinal projections to the SCN and to the adjacent subparaventricular zone. Retinal innervation outside the hypothalamus was not obviously affected by the lesions. Our results indicate that retinohypothalamic projections, and the targets of these projections, to the SCN and/or adjacent hypothalamic areas play an important role in masking.  相似文献   
8.
There are two ways in which an animal can confine its behavior to a nocturnal or diurnal niche. One is to synchronize an endogenous clock that in turn controls the sleep–wake cycle. The other is to respond directly to illumination with changes in activity. In mice, high illumination levels suppress locomotion (negative masking) and low illumination levels enhance locomotion (positive masking). To investigate the role of the newly discovered opsin‐like protein melanopsin in masking, we used 1h and 3h pulses of light given in the night, and also a 3.5:3.5h light–dark (LD) cycle. Mice lacking the melanopsin gene had normal enhancement of locomotion in the presence of dim lights but an impaired suppression of locomotion in the presence of bright light. This impairment was evident only with lights in the order of 10 lux or brighter. This suggests that melanopsin in retinal ganglion cells is involved in masking, as it is in pupil contraction and phase shifts. Melanopsin is especially important in maintaining masking responses over long periods.  相似文献   
9.
Circadian rhythms in mammals are adjusted daily to the environmental day/night cycle by photic input via the retinohypothalamic tract (RHT). Retinal ganglion cells (RGCs) of the RHT constitute a separate light-detecting system in the mammalian retina used for irradiance detection and for transmission to the circadian system and other non-imaging forming processes in the brain. The RGCs of the RHT are intrinsically photosensitive due to the expression of melanopsin, an opsin-like photopigment. This notion is based on anatomical and functional data and on studies of mice lacking melanopsin. Furthermore, heterologous expression of melanopsin in non-neuronal mammalian cell lines was found sufficient to render these cells photosensitive. Even though solid evidence regarding the function of melanopsin exists, little is known about the regulation of melanopsin gene expression. Studies in albino Wistar rats showed that the expression of melanopsin is diurnal at both the mRNA and protein levels. The diurnal changes in melanopsin expression seem, however, to be overridden by prolonged exposure to light or darkness. Significant increase in melanopsin expression was observed from the first day in constant darkness and the expression continued to increase during prolonged exposure in constant darkness. Prolonged exposure to constant light, on the other hand, decreased melanopsin expression to an almost undetectable level after 5 days of constant light. The induction of melanopsin by darkness was even more pronounced if darkness was preceded by light suppression for 5 days. These observations show that dual mechanisms regulate melanopsin gene expression and that the intrinsic light-responsive RGCs in the albino Wistar rat adapt their expression of melanopsin to environmental light and darkness.  相似文献   
10.

Background

Our aim was to determine the association between melanopsin gene polymorphism and pupillary light reflex under diverse photic conditions, including different intensities and wavelengths.

Methods

A total of 195 visually corrected subjects volunteered for investigation of the melanopsin gene of single nucleotide polymorphism (SNP) of rs1079610 (I394T). The genotype groups were TT (n = 126), TC (n = 55), and CC (n = 8), and 75 of the subjects, including subjects with TT (n = 34), TC (n = 33), and CC (n = 8) participated in our experiment. Three monochromatic lights with peak wavelengths of 465 nm (blue), 536 nm (green), and 632 nm (red) were prepared, and each light was projected to the subjects with five intensities, 12, 13, 14, 14.5 and 15 log photons/(cm2 s), for one minute. The pupil size of the left eye was measured under each light condition after a 1-minute adaptation.

Results

The pupils of the TC + CC genotypes (n = 38) were significantly smaller than those of the TT genotype (n = 31) under a blue (463 nm) light condition with 15 log photons/(cm2 s) (P < 0.05). In contrast, there were no significant differences under green (536 nm) and red (632 nm) light conditions. Conversely, relative pupil constrictions of the TC + CC genotypes were greater than those of the TT genotype under both blue and green conditions with high intensities (14.5 and 15 log photons/(cm2 s)). In contrast, there were no significant differences between genotype groups in pupil size and relative pupilloconstriction under the red light conditions.

Conclusions

Our findings suggest that the melanopsin gene polymorphism (I394T) functionally interacts with pupillary light reflex, depending on light intensity and, particularly, wavelength, and that under a light condition fulfilling both high intensity and short wavelength, the pupillary light response of subjects with the C allele (TC + CC) is more sensitive to light than that of subjects with the TT genotype.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号