首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  2021年   1篇
  2011年   1篇
  2006年   2篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1992年   2篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
黑色素细胞是皮肤中的特殊细胞,它产生黑色素,并将其传递给周围的角质形成细胞,从而决定皮肤的颜色等,其来源于黑色素母细胞.因此,了解黑色素母细胞如何迁移至靶点,对改善个体肤色以及诊断和治疗黑色素瘤等都具有重要意义.文章通过对黑色素母细胞沿神经迁移这一模式的过程和相关机制进行综述,希望为个体肤色改善以及黑色素瘤术后复发机制...  相似文献   
2.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and a melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were further cultured with MDMD/MDMDF supplemented with granulocyte-macrophage colony-stimulating factor (GMCSF) from 14 days (keratinocyte depletion). GMCSF stimulated the number of melanoblasts/melanocytes as well as the percentage of differentiated melanocytes in keratinocyte-depleted cultures. Flow cytometry analysis showed that melanoblasts and melanocytes in the S and G(2)/M phases of the cell cycle were increased by the treatment with GMCSF. Moreover, anti-GMCSF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts/melanocytes as well as the differentiation of melanocytes. Enzyme-linked immunosorbent assay of culture media revealed that GMCSF was secreted from keratinocytes, but not from melanocytes. These results suggest that GMCSF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanoblasts/melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   
3.
The specification, differentiation and maintenance of diverse cell types are of central importance to the development of multicellular organisms. The neural crest of vertebrate animals gives rise to many derivatives, including pigment cells, peripheral neurons, glia and elements of the craniofacial skeleton. The development of neural crest-derived pigment cells has been studied extensively to elucidate mechanisms involved in cell fate specification, differentiation, migration and survival. This analysis has been advanced considerably by the availability of large numbers of mouse and, more recently, zebrafish mutants with defects in pigment cell development. We have identified the zebrafish mutant touchtone (tct), which is characterized by the selective absence of most neural crest-derived melanophores. We find that although wild-type numbers of melanophore precursors are generated in the first day of development and migrate normally in tct mutants, most differentiated melanophores subsequently fail to appear. We demonstrate that the failure in melanophore differentiation in tct mutant embryos is due at least in part to the death of melanoblasts and that tct function is required cell autonomously by melanoblasts. The tct locus is located on chromosome 18 in a genomic region apparently devoid of genes known to be involved in melanophore development. Thus, zebrafish tct may represent a novel as well as selective regulator of melanoblast development within the neural crest lineage. Further, our results suggest that, like other neural crest-derived sublineages, melanogenic precursors constitute a heterogeneous population with respect to genetic requirements for development.  相似文献   
4.
5.
Stem cell factor (SCF) has been suggested to be indispensable for the development of neural crest cells into melanocytes because Steel mutant mice (i.e., Sl/Sf1) have no pig-mented hairs. On the other hand, it has been demonstrated that the addition of endothelin 3 (ET-3) or TPA to neural crest cell cultures can induce melanocyte differentiation without addition of extrinsic SCF. In this study, we excluded the influence of intrinsic SCF by using SI/SI mouse embryos to study more precisely the effects of natural cytokines, such as extrinsic soluble SCF or ET-3, or chemical reagents, such as TPA or cholera toxin. We found that SCF is supplied within the wild-type neural crest explants and that ET-3 cannot induce melanocyte differentiation or proliferation without SCF. These results indicate that SCF plays a critical role in survival or G1/S entry of melanocyte progenitors and that SCF initially stimulates their proliferation and then ET-3 accelerates their proliferation and differentiation. TPA has the ability to elicit neural crest cell differentiation into melanocytes without exogenously added SCF but it is not as effective as SCF because many more melanocytes developed in the wild-type neural crest explants cultured with TPA.  相似文献   
6.
7.
Cadherins are calcium‐dependent cell adhesion receptors with strong morphoregulatory functions. To mediate functional adhesion, cadherins must interact with actin cytoskeleton. Catenins are cytoplasmic proteins that mediate the interactions between cadherins and the cytoskeleton. In addition to their role in cell–cell adhesion, catenins also participate in signaling pathways that regulate cell growth and differentiation. Cadherins and catenins appear to be involved in melanocyte development and transformation. Here, we investigated the function of cadherin–catenin complexes in the normal development and transformation of melanocytes by studying the patterns of expression of the cell–cell adhesion molecules, E‐, N‐ and P‐cadherin, and the expression of their cytoplasmic partners, α‐, β‐ and Γ‐catenin, during murine development. Similar analyses were performed in vitro using murine melanoblast, melanocyte, and melanoma cell lines in the presence and absence of keratinocytes, the cells with which melanocytes interact in vivo. Overall, the results suggest that the expression of cadherins and catenins is very plastic and depends on their environment as well as the transformation status of the cells. This plasticity is important in fundamental cellular mechanisms associated with normal and pathological ontogenesis, as well as with tumorigenesis.  相似文献   
8.
The slaty (Dct(slt)) mutation is known to reduce the activity of dopachrome tautomerase (DCT) in melanocytes. However, it is unknown whether the reduced DCT activity leads to a defect in the proliferation and differentiation of mouse melanocytes. To address this point, the proliferation and differentiation of neonatal melanocytes from Dct(slt)/Dct(slt) congenic mice in serum-free primary culture were investigated in detail. The proliferation of slaty epidermal melanoblasts/melanocytes in culture did not differ from that of wild-type mice. However, the differentiation was greatly inhibited. Tyrosinase (TYR) activity detected by dopa reaction as well as staining of DCT in slaty melanocytes was greatly reduced. The content of eumelanin in cultured slaty melanocytes was reduced, whereas the content of pheomelanin in media derived from cultured 7.5-day-old slaty melanocytes was greatly increased. The contents of eumelanin and pheomelanin in the neonatal slaty epidermis and dermis were reduced, except that the pheomelanin content in 3.5-day-old dermis was increased. These results suggest that the slaty mutation affects both eumelanin and pheomelanin synthesis in developmental stage-specific and skin site-specific manners, and, in addition, the gene controls the differentiation of melanocytes via the regulation of activity of TYR in addition to its own DCT.  相似文献   
9.
Long‐term exposure to ultraviolet radiation B (UVB) induced pigmented spots in the dorsal skin of hairless mice of strain (HR‐1 X HR/De)F1. To clarify the cellular mechanism for the development of these UVB‐induced pigmented spots, we investigated changes in the proliferative activity of epidermal melanoblasts and melanocytes in the dorsal skin at various weeks after UVB irradiation. Epidermal cell suspensions from the dorsal skin of hairless mice were cultured in a serum‐free medium supplemented with dibutyryl adenosine 3′:5′‐cyclic monophosphate (DBcAMP) and basic fibroblast growth factor (bFGF). The suspensions were prepared from dorsal skins of mice exposed to UVB for 4 weeks (the stage of hyperpigmentation). Suspensions were also prepared from mice at 3 (the stage of depigmentation), 8 (the stage of appearance of pigmented spots), 20 (the stage of development of small‐sized pigmented spots) and 37 (the stage of development of medium‐sized pigmented spots) weeks after the cessation of 8‐week UVB exposure. At the stage of hyperpigmentation the proliferative activity of melanoblasts and melanocytes was suppressed. With the development of pigmented spots, the proliferative activity of undifferentiated melanoblasts gradually increased, and then followed the increase in the proliferative activity of differentiated melanocytes. These results suggest that the proliferative activity of epidermal melanoblasts and melanocytes in UVB‐irradiated skin increases with the development of pigmented spots.  相似文献   
10.
We devised a unique new single‐cell cloning method which uses microscope cover glasses and established a melanoblast cell line derived from mouse neural crest cells. A microscope cover glass was nicked and broken into small pieces and put on a dish. Culture medium and a suspension of 20–30 cells/ml were dropped in the dish. After 1–3 d, a piece of glass to which only one cell was adhered was picked up and transferred to another dish containing culture medium. The greatest advantage of this method is that the derivation of a colony from a single cell can be directly confirmed by microscopy and there is no risk of migratory cells being contaminated by other colonies. Using this single‐cell cloning method, in this study we established a cell line derived from a neural crest cell line (NCC‐S4.1) and designated it as NCCmelb4. When the culture medium was supplemented with stem cell factor (SCF) alone, NCCmelb4 cells were KIT‐positive and tyrosinase‐negative melanocyte precursors; they remained at an immature and undifferentiated stage. When the medium was supplemented with phorbol 12‐o‐tetradecanoyl‐13‐acetate (TPA) + cholera toxin (CT), the cell morphology changed and became l ‐3,4‐dihydroxyphenylalanine (DOPA)‐positive. This observation indicates that the NCCmelb4 cells are capable of further differentiation with suitable stimulation. NCCmelb4 cells derived from the mouse neural crest has characteristics of melanocyte precursors (melanoblasts), and is a cell line which can be utilized to study differentiation‐inducing factors and growth factors without the effects of feeder cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号