首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  2015年   1篇
  2013年   5篇
  2011年   1篇
  2009年   5篇
  2008年   1篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1991年   3篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有48条查询结果,搜索用时 46 毫秒
1.
Potentials were recorded from the epidermal head lines and from the CNS of young cuttlefish, Sepia officinalis, in response to weak water movements. 1. Within the test range 0.5-400 Hz a sinusoidal water movement elicits up to 4 components of response if the electrode is placed on a headline: (i) a positive phasic ON response; (ii) a tonic frequency-following microphonic response; (iii) a slow negative OFF response; and (iv) compound nerve impulses. 2. The amplitude of both the ON wave and the microphonic potential depends on stimulus frequency, stimulus amplitude and stimulus rise time. Frequencies around 100 Hz and short rise times are most effective in eliciting strong potentials. The minimal threshold was 0.06 microns peak-to-peak water displacement at 100 Hz (18.8 microns/s as velocity). 3. Change of direction of tangential sphere movement (parallel vs. across the head lines) has only a small effect on the microphonic and the summed nerve potentials. 4. Frequency and/or amplitude modulations of a carrier stimulus elicit responses at the onset and offset of the modulation and marked changes in the tonic microphonic response. 5. Evoked potentials can be recorded from the brain while stimulating the epidermal lines with weak water movements. The brain potentials differ in several aspects from the potentials of the head lines and show little or no onset or offset wave at the transitions of a frequency and amplitude modulation.  相似文献   
2.
Summary The ability of an erpobdellid leech, Erpobdella montezuma, to discriminate between two congeneric amphipod prey (Hyalella montezuma and Hyalella azteca) through mechanoreception was examined. Both E. montezuma and H. montezuma, a pelagic filter feeder, are endemic to the near thermally constant environment of Montezuma Well, Arizona, and form a highly specialized predator-prey relationship. In contrast, H. azteca, a benthic detritivore, is widely distributed throughout North America. Erpobdella montezuma was highly responsive to the prey signals of the endemic H. montezuma and showed only a limited response to H. azteca. An inverse relationship occurred between the frequency of attack and size of the leech. The abilities of Erpobdella punctata and Nephelopsis obscura, neither found in Montezuma Well, to detect the signals of both amphipod prey were also examined. These species with non-specialized diets showed a low response to the signals of both prey species. This study demonstrates that very close predator-prey relationships can develop over evolutionary time in isolated aquatic systems through the use of mechanoreception.  相似文献   
3.
Mechanosensory lateral line afferents of weakly electric fish (Eigenmannia) responded to an object which moved parallel to the long axis of the fish with phases of increased spike activity separated by phases of below spontaneous activity. Responses increased with object speed but finally may show saturation. At increasingly greater distances the responses decayed as a power function of distance. For different object velocities the exponents (mean±SD) describing this response falloff were -0.71±0.4 (20 cm/s object velocity) and-1.9±1.25 (10 cm/s). Opposite directions of object movement may cause an inversion of the main features of the response histograms. In terms of peak spike rate or total number of spikes elicited, however, primary lateral line afferents were not directionally sensitive.Central (midbrain) lateral line units of weakly electric fish (Apteronotus) showed a jittery response if an object moved by. In midbrain mechanosensory lateral line, ampullary, and tuberous units the response to a rostral-tocaudal object movement may be different from that elicited by a caudal-to-rostral object motion. Central units of Apteronotus may receive input from two or more sensory modalities. Units may be lateral line-tuberous or lateral line-ampullary. Multimodal lateral line units were OR units, i.e., the units were reliably driven by a unimodal stimulus of either modality. The receptive fields of central units demonstrate a weak somatotopic organization of lateral line input: anterior body areas project to rostral midbrain, posterior body areas project to caudal midbrain.Abbreviation EOD electric organ discharge  相似文献   
4.
《Zoology (Jena, Germany)》2015,118(5):320-324
Crocodiles show oriented responses to water surface wave stimuli but up to now behavioral thresholds are missing. This study determines the behavioral thresholds of crocodilians to water surface waves. Nile crocodiles (Crocodylus niloticus) were conditioned to respond to single-frequency water surface wave stimuli (duration 1150 ms, frequency 15, 30, 40, 60 and 80 Hz), produced by blowing air onto the water surface. Our study shows that C. niloticus is highly sensitive to capillary water surface waves. Threshold values decreased with increasing frequency and ranged between 10.3 μm (15 Hz) and 0.5 μm (80 Hz) peak-to-peak wave amplitude. For the frequencies 15 Hz and 30 Hz the sensitivity of one spectacled caiman (Caiman crocodilus) to water surface waves was also tested. Threshold values were 12.8 μm (15 Hz) down to 1.76 μm (30 Hz), i.e. close to the threshold values of C. niloticus. The surface wave sensitivity of crocodiles is similar to the surface wave sensitivity of semi-aquatic insects and fishing spiders but does not match the sensitivity of surface-feeding fishes which is higher by one to two orders of magnitude.  相似文献   
5.
Mechanosensory lateral line units recorded from the medulla (medial octavolateralis nucleus) and midbrain (torus semicircularis) of the bottom dwelling catfish Ancistrus sp. responded to water movements caused by an object that passed the fish laterally. In terms of peak spike rate or total number of spikes elicited responses increased with object speed and sometimes showed saturation (Figs. 7, 14). At sequentially greater distances the responses of most medullary lateral line units decayed with object distance (Fig. 11). Units tuned to a certain object speed or distance were not found. The signed directionality index of most lateral line units was between –50 and +50, i.e. these units were not or only slightly sensitive to the direction of object motion (Figs. 10, 17). However, some units were highly directionally sensitive in that the main features of the response histograms and/or peak spike rates clearly depended on the direction of object movement (e.g. Fig. 9C, D and Fig. 16). Midbrain lateral line units of Ancistrus may receive input from more than one sensory modality. All bimodal lateral line units were OR units, i.e., the units were reliably driven by a unimodal stimulus of either modality. Units which receive bimodal input may show an extended speed range (e.g. Fig. 18).Abbreviations MON medial octavolateralis nucleus - MSR mean spike rate - PSR peak spike rate - p-p peak-to-peak - SDI signed directionality index  相似文献   
6.
Neurons in the olfactory deutocerebrum of the spiny lobster, Panulirus argus, were recorded intracellularly and filled with biocytin. Recorded neurons arborized in the olfactory lobe (OL), a glomerular neuropil innervated by olfactory and some presumptive mechanosensory antennular afferents. The neurons responded to chemosensory input from the lateral antennular flagellum bearing the olfactory sensilla but not the medial flagellum bearing many non-olfactory chemosensory sensilla. Many neurons received additional mechanosensory input. Thus the OL integrates specifically olfactory with mechanosensory input. OL neurons had multiglomerular arborizations restricted to one or two of the three horizontal layers of the columnar glomeruli. OL local interneurons comprised core neurons with tree-like neurites and terminals in the base of the glomeruli and rim neurons with neurites surrounding the OL and terminals in the cap/subcap. The somata of OL local interneurons lay in the medial soma cluster (100000 somata). OL projection neurons arborized in the base of the glomeruli and ascended via the olfactory glomerular tract to the lateral protocerebrum. A parallel projection pathway is constituted by projection neurons of the accessory lobe, a glomerular neuropil without afferent innervation but intimate links to the OL. The projection neuron somata constituted the lateral soma cluster (200000 somata).Abbreviations AC anterior cluster (cluster 6,7) - AL accessory lobe - aMC anterior subcluster of medial cluster (cluster 9) - A lNv main antenna I (antennular) nerve - A lNM antenna I (antennular) motor nerve - A llNv main antenna II (antennal) nerve - CB central body - CL central layer of accessory lobe - DC deutocerebral commissure - DCN deutocerebral commissure neuropil - dDUMC dorsal subcluster of dorsal unpaired median cluster (cluster 17) - dMC dorsal subcluster of medial cluster (cluster 11) - dVPALC dorsal subcluster of ventral paired anterolateral cluster (cluster 8) G glomerulus - IDUMC lateral subcluster of dorsal unpaired median cluster (cluster 16) - LC lateral cluster (cluster 10) - LF lateral flagellum of antenna I (antennule) - LL lateral layer of accessory lobe - MF medial flagellum of antenna I (antennule) - ML medial layer of accessory lobe - MPN anterior and posterior median protocerebral neuropils - OGT olfactory globular tract - OGTN olfactory globular tract neuropil - OL olfactory lobe - OLALT olfactory lobe-accessory lobe tract - PB protocerebral bridge - pMC posterior subcluster of medial cluster (cluster 9) - PT protocerebral tract - TNv tegumentary nerve - VPMC ventral paired medial cluster (cluster 12) - VUMC ventral unpaired medial cluster (cluster 13) - vVPALC ventral subcluster of ventral paired anterolateral cluster (cluster 8) - ASW artificial sea water - M3 mixture 3 - PRO L-proline - TM TetraMarin extract  相似文献   
7.
We investigated how fibers in the anterior lateral line nerve of goldfish, Carassius auratus, respond to water motions generated by an object that was moved alongside the fish. Motion direction was from anterior to posterior or opposite, object diameter was between 0.1 and 4 cm and the distance between object and fish varied between 1 and 6 cm. Fibers exhibited monophasic responses characterized by a transient increase in discharge rate, biphasic responses consisting of an increase followed by a decrease in discharge rate or vice versa, or triphasic responses characterized by a rate increase followed by a decrease and again an increase or by the inverse pattern. In two-thirds of the fibers response patterns depended on object motion direction. Of these, about 60% responded to a reversal of motion direction with an inversion of the response pattern. Our results differ from previous data obtained from posterior lateral line nerve fibers in the relative proportions of the observed response patterns, and by a much smaller proportion of fibers that exhibited a direction-dependent response. These differences can be explained by the fact that the spatial orientations of the neuromasts on the head are more heterogenuous than on the trunk.  相似文献   
8.
Gustatory receptors (basiconic sensilla) on the legs of the desert locust, Schistocerca gregaria, are innervated by chemosensory afferents and by a mechanosensory afferent. We show, for the first time, that these mechanosensory afferents form an elaborate detector system with the following properties: 1) they have low threshold displacement angles that decrease with increasing stimulus frequency in the range 0.05–1 Hz, 2) they respond phasically to deflections of the receptor shaft and adapt rapidly to repetitive stimulation, 3) they encode the velocity of the stimulus in their spike frequency and have velocity thresholds lower than 1°/s, and 4) they are directionally sensitive, so that stimuli moving proximally towards the coxa elicit the greatest response.The mechanosensory afferents, but not the chemosensory afferents, make apparently monosynaptic connections with spiking local interneurones in a population with somata at the ventral midline of the metathoracic ganglion. They evoke excitatory synaptic potentials that can sum to produce spikes in the spiking local interneurones. Stimulation of the single mechanosensory afferent of a gustatory receptor can also give rise to long lasting depolarizations, or to bursts of excitatory postsynaptic potentials in the interneurones that can persist for several seconds after the afferent spikes. These interneurones are part of the local circuitry involved in the production of local movements of a leg. The mechanosensory afferents from gustatory receptors must, therefore, be considered as part of the complex array of exteroceptors that provide mechanosensory information to these local circuits for use in adjusting, or controlling locomotion.  相似文献   
9.
Forces exerted by a leg in support and propulsion can vary considerably when animals stand upon or traverse irregular terrains. We characterized the responses of the cockroach tibial campaniform sensilla, mechanoreceptors which encode force via strains produced in the exoskeleton, by applying forces to the leg at controlled magnitudes and rates. We also examined how sensory responses are altered in the presence of different levels of static load. All receptors exhibit phasico-tonic discharges that reflect the level and rate of force application. Our studies show that: (1) tonic discharges of sensilla can signal the level of force, but accurate encoding of static loads may be affected by substantial receptor adaptation and hysteresis; (2) the absolute tonic sensitivities of receptors decrease when incremental forces are applied at different initial load levels; (3) phasic discharges of sensilla accurately encode the rate of force application; and (4) sensitivities to changing rates of force are strictly preserved in the presence of static loads. These findings imply that discharges of the sensilla are particularly tuned to the rate of change of force at all levels of leg loading. This information could be utilized to adapt posture and walking to varying terrains and unexpected perturbations. Accepted: 8 January 2000  相似文献   
10.

Tactile stimulation of the wings (parapodia) of actively swimming Clione limacina results in inhibition of swimming and retraction of the wings. Electrophysiological evidence suggests that wing mechanoreceptors have central cell bodies and wide innervation fields in the ipsilateral wing. Scanning electron microscopy of expanded wings reveals ciliary cone processes arranged in a pattern that is similar to the electrophysiologically‐determined innervation fields of wing mechanoreceptors. Transmission electron microscopy suggests that the ciliary cone structures are terminal processes of neuron‐like cells. Three‐dimensional reconstructions of serially‐sectioned terminal processes indicate that cell bodies are not found in the wing epithelium or immediately under the epithelium, further supporting the notion that the wing mechanoreceptors have central cell bodies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号