首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   3篇
  国内免费   5篇
  589篇
  2023年   3篇
  2022年   2篇
  2021年   2篇
  2019年   3篇
  2017年   2篇
  2016年   3篇
  2015年   2篇
  2014年   47篇
  2013年   82篇
  2012年   110篇
  2011年   150篇
  2010年   126篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   4篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有589条查询结果,搜索用时 0 毫秒
1.
Indirect evidence has suggested that the Msh2-Msh6 mispair-binding complex undergoes conformational changes upon binding of ATP and mispairs, resulting in the formation of Msh2-Msh6 sliding clamps and licensing the formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes. Here, we have studied eight mutant Msh2-Msh6 complexes with defective responses to nucleotide binding and/or mispair binding and used them to study the conformational changes required for sliding clamp formation and ternary complex assembly. ATP binding to the Msh6 nucleotide-binding site results in a conformational change that allows binding of ATP to the Msh2 nucleotide-binding site, although ATP binding to the two nucleotide-binding sites appears to be uncoupled in some mutant complexes. The formation of Msh2-Msh6-Mlh1-Pms1 ternary complexes requires ATP binding to only the Msh6 nucleotide-binding site, whereas the formation of Msh2-Msh6 sliding clamps requires ATP binding to both the Msh2 and Msh6 nucleotide-binding sites. In addition, the properties of the different mutant complexes suggest that distinct conformational states mediated by communication between the Msh2 and Msh6 nucleotide-binding sites are required for the formation of ternary complexes and sliding clamps.  相似文献   
2.
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg2+ or Mn2+ for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4–9-fold reductions in kcat/Km relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.  相似文献   
3.
4.
《IRBM》2023,44(1):100728
Inner ear disorders' treatment remains challenging due to anatomical barriers. Robotic assistance seems to be a promising approach to enhance inner ear treatments and, more particularly, lead to effective targeted drug delivery into the human cochlea. In this paper we present a combination of a micro-macro system that was designed and realized in order to efficiently control the navigation of magnetic nanoparticles in an open-loop scheme throughout the cochlea, considering that the magnetic particles cannot be located in real time.In order to respect the anatomical constraints, we established the characteristics that the new platform must present then proceeded to the design of the latter. The developed system is composed of a magnetic actuator that aims to guide nanoparticles into the cochlea. Mounted on a robotic manipulator, it ensures its positioning around the patient's head. The magnetic device integrates four parallelepiped-rectangle permanent magnets. Their arrangement in space, position and orientation, allows the creation of an area of convergence of magnetic forces where nanoparticles can be pushed/pulled to. To ensure the reachability of the desired orientations and positions, a 3 DOF robot based on a Remote Centre of Motion (RCM) mechanism was developed. It features three concurrent rotational joints that generate a spherical workspace around the head. The control of the latter is based on kinematic models.A prototype of this platform was realized to validate the actuation process. Both magnetic actuator and robotic manipulator were realized using an additive manufacturing approach. We also designed a virtual human head with a life-size cochlea inside. A laser was mounted on the end effector to track the positioning of the actuator. This permitted to experimentally prove the capacity of the robotic system to reach the desired positions and orientations in accordance with the medical needs.This promising robotic approach, makes it possible to overcome anatomical barriers and steer magnetic nanoparticles to a targeted location in the inner ear and, more precisely, inside the cochlea.  相似文献   
5.
Summary We have implemented a routine procedure for screening protein sequences for evidence of intragenic duplications. We tested 163 protein sequences representing 116 superfamilies of unrelated proteins. Twenty superfamilies contain proteins with internal gene duplications. The intragenic duplications detected can be divided into two major types. (1) One or more duplications of all or part of a gene produce a protein with two or several detectable regions of sequence homology. Sequences from 18 superfamilies contained this type of duplication. (2) Repeated reduplication of a small DNA segment can produce a protein that is repetitive over most of its length. Three superfamilies contain such repetitive sequences. We also investigated the limits of detection of ancient duplications using sequences derived by random mutation of a model sequence consisting of ten 10-residue repeats. The original repetitive nature of the sequence was usually detected after 250 point mutations even though the ancestral segment could not be accurately reconstructed.  相似文献   
6.
有机酸在植物解铝毒中的作用及生理机制   总被引:11,自引:0,他引:11  
酸性土壤上铝毒是限制作物产量的一个重要障碍因子,具有螯合能力的有机酸在植物铝的外部排斥机制和内部耐受机制均具有重要作用,在铝的外部排斥解毒过程中,植物通过根系分泌有机酸进入根际,如柠檬酸,草酸,苹果酸等与铝形成稳定的复合体,阻止铝进入共质体,从而达到植物体外解除铝毒害效应的目的,且分泌的有机酸对铝的胁迫诱导表现出高度的专一性,分泌的关键点位于根尖,不同的物种间分泌的有机酸种类,分泌的模式及生理机理存在差异,在铝积累型植物的内部解毒过程中,有机酸与铝形成稳定的化合物,降低植物体内铝离子的生理活性,从而降低细胞内铝离子的毒害效应,如绣球花中铝与柠檬酸形成1:1的复合体,荞麦内铝与草酸形成1:3的复合体,本文就有机酸在植物忍耐和积累铝中的作用及生理机制作一简要综述。  相似文献   
7.
Chlorella virus DNA ligase (ChVLig) is an instructive model for mechanistic studies of the ATP-dependent DNA ligase family. ChVLig seals 3'-OH and 5'-PO(4) termini via three chemical steps: 1) ligase attacks the ATP α phosphorus to release PP(i) and form a covalent ligase-adenylate intermediate; 2) AMP is transferred to the nick 5'-phosphate to form DNA-adenylate; 3) the 3'-OH of the nick attacks DNA-adenylate to join the polynucleotides and release AMP. Each chemical step requires Mg(2+). Kinetic analysis of nick sealing by ChVLig-AMP revealed that the rate constant for phosphodiester synthesis (k(step3) = 25 s(-1)) exceeds that for DNA adenylylation (k(step2) = 2.4 s(-1)) and that Mg(2+) binds with similar affinity during step 2 (K(d) = 0.77 mm) and step 3 (K(d) = 0.87 mm). The rates of DNA adenylylation and phosphodiester synthesis respond differently to pH, such that step 3 becomes rate-limiting at pH ≤ 6.5. The pH profiles suggest involvement of one and two protonation-sensitive functional groups in catalysis of steps 2 and 3, respectively. We suggest that the 5'-phosphate of the nick is the relevant protonation-sensitive moiety and that a dianionic 5'-phosphate is necessary for productive step 2 catalysis. Motif VI, located at the C terminus of the OB-fold domain of ChVLig, is a conserved feature of ATP-dependent DNA ligases and GTP-dependent mRNA capping enzymes. Presteady state and burst kinetic analysis of the effects of deletion and missense mutations highlight the catalytic contributions of ChVLig motif VI, especially the Asp-297 carboxylate, exclusively during the ligase adenylylation step.  相似文献   
8.
耐有机溶剂微生物是一类新颖的极端微生物,直到20世纪80年代才被系统地研究.它们通过各种耐受机制,有效抵御或降低有机溶剂对其细胞产生的毒害作用.因此,在全细胞催化、环境污染治理等领域,耐有机溶剂极端微生物具有广阔的工业应用前景.此外,深入透彻地了解耐有机溶剂极端微生物的各种耐受机制,有助于利用基因工程技术改造和优化现有耐有机溶剂极端微生物的各种性能,进一步拓展其工业应用领域.本文将从囊泡外排、改变细胞膜磷脂结构和组成等4个方面概述近年来耐有机溶剂极端微生物的耐受机制研究新进展,并介绍它们在全细胞催化等领域的应用.  相似文献   
9.
A systematic and powerful knowledge‐based framework exists for improving the activity and stability of chemical catalysts and for empowering the commercialization of respective processes. In contrast, corresponding biotechnological processes are still scarce and characterized by case‐by‐case development strategies. A systematic understanding of parameters affecting biocatalyst efficiency, that is, biocatalyst activity and stability, is essential for a rational generation of improved biocatalysts. Today, systematic approaches only exist for increasing the activity of whole‐cell biocatalysts. They are still largely missing for whole‐cell biocatalyst stability. In this review, we structure factors affecting biocatalyst stability and summarize existing, yet not completely exploited strategies to overcome respective limitations. The factors and mechanisms related to biocatalyst destabilization are discussed and demonstrated inter alia based on two case studies. The factors are similar for processes with different objectives regarding target molecule or metabolic pathway complexity and process scale, but are in turn highly interdependent. This review provides a systematic for the stabilization of whole‐cell biocatalysts. In combination with our knowledge on strategies to improve biocatalyst activity, this paves the way for the rational design of superior recombinant whole‐cell biocatalysts, which can then be employed in economically and ecologically competitive and sustainable bioprocesses.  相似文献   
10.
In order to make a progress in discovering a new agents for chemotherapy with improved properties and bearing in mind the fact that substituted 3-hydroxy-3-pyrrolin-2-ones belong to a class of biologically active compounds, series of novel 1,5-diaryl-4-(2-thienylcarbonyl)-3-hydroxy-3-pyrrolin-2-ones were synthesized and characterized by spectral (UV–Vis, IR, NMR, ESI-MS), X-ray and elemental analysis. All compounds were examined for their cytotoxic effect on human cancer cell lines HeLa and MDA-MB 231 and normal fibroblasts (MRC-5). Four compounds, 3-hydroxy-1-(p-tolyl)-4-(2-thienylcarbonyl)-5-(4-chlorophenyl)-2,5-dihydro-1H-pyrrol-2-one (D10), 3-hydroxy-1-(3-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D13), 3-hydroxy-1-(4-nitrophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D14), and 3-hydroxy-1-(4-chlorophenyl)-4-(2-thienylcarbonyl)-5-(4-(benzyloxy)phenyl)-2,5-dihydro-1H-pyrrol-2-one (D15), that showed the highest cytotoxicity against malignant cells and the best selectivity towards normal cells were selected for further experiments. Results obtained by investigating mechanisms of cytotoxic activity suggest that selected 3-hydroxy-3-pyrrolin-2-one derivatives in HeLa cells induce apoptosis that is associated with S phase arrest (D13, D15, and D10) or unrelated to cell cycle distribution (D14). Additionally, to better understand their suitability for potential use as anticancer medicaments we studied the interactions between biomacromolecules (DNA or BSA) and D13 and D15. The results indicated that D13 and D15 have great affinity to displace EB from the EB-DNA complex through intercalation [Ksv = (3.7 ± 0.1) and (3.4 ± 0.1) × 103 M−1, respectively], an intercalative mode also confirmed through viscosity measurements. Ka values, obtained as result of fluorescence titration of BSA with D13 and D15 [Ka = (4.2 ± 0.2) and (2.6 ± 0.2) × 105 M, respectively], support the fact that a significant amount of the tested compounds could be transported and distributed through the cells. In addition, by DNA and BSA molecular docking study for D13, D14 and D15 is determined and predicted the binding mode and the interaction region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号