首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   4篇
  国内免费   2篇
  2023年   3篇
  2022年   1篇
  2021年   5篇
  2020年   9篇
  2019年   11篇
  2018年   3篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   9篇
  2013年   18篇
  2012年   6篇
  2011年   6篇
  2010年   5篇
  2009年   8篇
  2008年   2篇
  2007年   3篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   9篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   5篇
  1993年   8篇
  1992年   12篇
  1991年   4篇
  1990年   4篇
  1989年   7篇
  1988年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1972年   1篇
排序方式: 共有203条查询结果,搜索用时 24 毫秒
1.
The purpose of the study was to examine the influence of oxygen-breathing on maximal oxygen uptake (VO2max) and submaximal endurance performance. Six young women and five men rode a cycle-ergometer while breathing compressed air (normoxia, NOX) or a 55% O2 in N2 mixture (hyperoxia, HOX). The VO2max increased significantly by 12% (P less than 0.01) with HOX in the women but not in the men (+4%; nonsignificant). Maximal heart rate was also increased with HOX in the women but not in the men. Endurance time during work to exhaustion at 80% of normoxic VO2max was 41% longer in HOX than in NOX (P less than 0.025) with no significant difference between the men and the women. The variation among individuals was large. The oxygen uptake and respiratory quotient were not different in the two endurance tests, but pulmonary ventilation (VE) and blood lactate concentration were lower in HOX than in NOX, especially during the latter part of the task. Plasma base deficit (BDpl) increased initially by 3.5 mmol.l-1 during HOX and then stabilized. In NOX, a continuous increase was seen and the change was more than twice as large. Relative to BDpl, VE was higher in HOX than in NOX indicating a more efficient ventilatory compensation of the metabolic acidosis. The reduced ventilatory demand and lower metabolic acidosis in HOX in combination with lower relative exercise intensity may have contributed to the longer time to exhaustion. However, the pattern of individual variation suggested that other mechanisms were also involved.  相似文献   
2.
Recently, we have shown that an untrained respiratory system does limit the endurance of submaximal exercise (64% peak oxygen consumption) in normal sedentary subjects. These subjects were able to increase breathing endurance by almost 300% and cycle endurance by 50% after isolated respiratory training. The aim of the present study was to find out if normal, endurance trained subjects would also benefit from respiratory training. Breathing and cycle endurance as well as maximal oxygen consumption (VO2max) and anaerobic threshold were measured in eight subjects. Subsequently, the subjects trained their respiratory muscles for 4 weeks by breathing 85-160 l.min-1 for 30 min daily. Otherwise they continued their habitual endurance training. After respiratory training, the performance tests made at the beginning of the study were repeated. Respiratory training increased breathing endurance from 6.1 (SD 1.8) min to about 40 min. Cycle endurance at the anaerobic threshold [77 (SD 6) %VO2max] was improved from 22.8 (SD 8.3) min to 31.5 (SD 12.6) min while VO2max and the anaerobic threshold remained essentially the same. Therefore, the endurance of respiratory muscles can be improved remarkably even in trained subjects. Respiratory muscle fatigue induced hyperventilation which limited cycle performance at the anaerobic threshold. After respiratory training, minute ventilation for a given exercise intensity was reduced and cycle performance at the anaerobic threshold was prolonged. These results would indicate the respiratory system to be an exercise limiting factor in normal, endurance trained subjects.  相似文献   
3.
We have previously observed that 11-year-old children of low socio-economic status (LSES) showed a delayed physical growth of approximately 2 years and developed lower normalized short-term power output than children of high socio-economic status (HSES) of the same age. In contrast, maximal oxygen uptake per unit of fat free mass was no different in either group. The aim of this study was to evaluate the effect of anthropometric characteristics between HSES and LSES prepubertal children in aerobic and anaerobic performance. To compare children of the same body dimensions, 11-year-old boys (n = 30) and girls (n = 31) of LSES and 9-year-old boys (n = 21) and girls (n = 27) of HSES were studied. Anthropometric measurements, (direct test), maximal anaerobic power (P max, force-velocity test) and mean anaerobic power ( , Wingate test) were determined. In these children having the same body dimensions: mean were the same in LSES and HSES children [1.2 (SD 0.2)1-min–1];P max and were lower in LSES subjects [154.0 (SD 33.2) vs 174.6 (SD 38.4) W and 116.3 (SD 23.3) vs 128.2 (SD 28.0) W, respectively]; the linear relationships between and fat free mass were the same in LSES and HSES boys but, in the girls, the LSES group had lower values. For anaerobic performance, the relationships were significantly different: the slopes were the same but LSES values for the both sexes were lower. These results would suggest that factors other than differences in body dimensions alone were responsible for the lower performance of LSES girls and boys. Cultural factors and motor learning, structural and functional alterations of muscle induced by marginal malnutrition have been discussed.  相似文献   
4.
The purpose of the present study was to examine the effect of maximal arm exercise on the skin blood circulation of the paralyzed lower limbs in persons with spinal cord injury (PSCI). Eight male PSCI with complete lesions located between T3 and L1 performed graded maximal arm-cranking exercise (MACE) to exhaustion. The skin blood flux at the thigh (SBFT) and that at the calf (SBFC) were monitored using laser-Doppler flowmeter at rest and for 15 s immediately after the MACE. The subject's mean peak oxygen uptake and peak heart rate was 1.41 ± 0.22 1·min−1 and 171.6 ± 19.2 beats·min−1, respectively. No PSCI showed any increase in either SBFT or SBFC after the MACE, when compared with the values at rest. These results suggest that the blood circulation of the skin in the paralyzed lower limbs in PSCI is unaffected by the MACE.  相似文献   
5.
The aim of this study was to investigate whether, when muscle glycogen is reduced, a pre-exercise infusion of branched-chain amino acids (BCAA) modifies exercise performance or the metabolic and respiratory responses to incremental exercise. Six moderately trained volunteers took part in the following protocol on two occasions. On day 1, at 9 a.m. in the postabsorptive state, they performed a graded incremental exercise (increases of 35 W every 4 min) to exhaustion (Ex-1). A meal of 1,000 kcal (4,200 kJ; 60% protein, 40% fat) was consumed at 12 p.m. No food was then allowed until the end of the experiment (20–21 h later). A 90-min period of exercise at alternating high and moderate intensities, designed to deplete muscle glycogen, was performed between 6 p.m. and 7.30 p.m. The morning after (day 2), the subjects randomly received either a mixed solution of BCAA (260 mg × kg–1 × h–1 for 70 min), or saline. They then repeated the graded incremental exercise to exhaustion (Ex-2). Metabolic and respiratory measurements suggested a muscle glycogen-depleted state had been achieved. No significant differences were observed in total work performed, maximal oxygen uptake or plasma ammonia, alanine, and blood pyruvate concentrations in the two treatments. After BCAA infusion, higher blood lactate concentrations were observed at maximal power output in comparison with those during saline [BCAA 4.97 (SEM 0.41) mmol × l–1, Saline 3.88 (SEM 0.47) mmol × l–1,P < 0.05]. In summary, in conditions of reduced muscle glycogen content, after a short period of fasting, BCAA infusion had no significant effect on the total work that could be performed during a graded incremental exercise.  相似文献   
6.
In the present study, we investigated whether weak (10% of maximal voluntary contraction) tonic dorsiflexion (DF) and plantarflexion (PF) affects the two conventional parameters used for evaluating the excitability of the soleus motoneuron (MN) pool, i.e. the ratio of the threshold of H-reflex to that of M-response (Hth:Mth) and the ratio of the maximal amplitude of H-reflex to that of M-response (Hmax:Mmax) in human subjects. The results showed that the Hmax:Mmax decreased during DF and increased during PF compared with that during rest, whereas no clear alteration was observed in Hth:Mth. These results are consistent with the scheme proposed by earlier workers, who have argued that neither inhibitory nor facilitatory effects of the conditioning stimulus apply to specific spinal reflex circuits occurring around the threshold of the test H-reflex. It is suggested, therefore, that the conventional use of the Hth:Mth ratio as a parameter reflecting the excitability of the MN pool should be reconsidered.  相似文献   
7.
The position of the body and use of the respiratory muscles in the act of rowing may limit ventilation and thereby reduce maximal aerobic power relative to that achieved in cycling or running, in spite of the greater muscle mass involved in rowing. This hypothesis was investigated for three groups of male subjects: nine elite senior oarsmen, eight former senior oarsmen and eight highly trained athletes unskilled in rowing. The subjects performed graded exercise to maximal effort on a rowing ergometer, cycle ergometer and treadmill while respiratory minute volume and oxygen consumption were monitored continuously. The VE at a given during intense submaximal exercise (greater than 75% of maximal ) was not significantly lower in rowing compared with that in cycling and treadmill running for any group, which would suggest that submaximal rowing does not restrict ventilation. At maximal effort, and for rowing were less than those for the other types of exercise in all the groups, although the differences were not statistically significant in the elite oarsmen. These data are consistent with a ventilatory limitation to maximal performance in rowing that may have been partly overcome by training in the elite oarsmen. Alternatively, a lower maximal VE in rowing might have been an effect rather than a cause of a lower maximal if maximal was limited by the lower rate of muscle activation in rowing.  相似文献   
8.
The mechanical power (Wtot, W·kg–1) developed during ten revolutions of all-out periods of cycle ergometer exercise (4–9 s) was measured every 5–6 min in six subjects from rest or from a baseline of constant aerobic exercise [50%–80% of maximal oxygen uptake (VO2max)] of 20–40 min duration. The oxygen uptake [VO2 (W·kg–1, 1 ml O2 = 20.9 J)] and venous blood lactate concentration ([la]b, mM) were also measured every 15 s and 2 min, respectively. During the first all-out period, Wtot decreased linearly with the intensity of the priming exercise (Wtot = 11.9–0.25·VO2). After the first all-out period (i greater than 5–6 min), and if the exercise intensity was less than 60% VO2max, Wtot, VO2 and [la]b remained constant until the end of the exercise. For exercise intensities greater than 60% VO2max, VO2 and [la]b showed continuous upward drifts and Wtot continued decreasing. Under these conditions, the rate of decrease of Wtot was linearly related to the rate of increase of V [(d Wtot/dt) (W·kg–1·s–1) = 5.0·10–5 –0.20·(d VO2/dt) (W·kg–1·s–1)] and this was linearly related to the rate of increase of [la]b [(d VO2/dt) (W·kg–1·s–1) = 2.310–4 + 5.910–5·(d [la]b/dt) (mM·s–1)]. These findings would suggest that the decrease of Wtot during the first all-out period was due to the decay of phosphocreatine concentration in the exercising muscles occurring at the onset of exercise and the slow drifts of VO2 (upwards) and of Wtot (downwards) during intense exercise at constant Wtot could be attributed to the continuous accumulation of lactate in the blood (and in the working muscles).  相似文献   
9.
Linear and curvilinear electromyogram (EMG) normalization methods were compared among ten healthy men during a simulated work cycle demanding attention and static holding of the arm (Solitaire test). Maximal voluntary contractions (MVC) and gradually increasing contractions up to 70% of MVC were used for normalization in different arm postures. The test contractions studied included inward and outward rotations, abduction, shoulder elevation, and flexion in different arm positions. The shoulder load moment was calculated for the flexion tests using a simple two-dimensional model. The effect of arm posture on the EMG versus shoulder load moment relationship was studied on the following muscles: supraspinatus, infraspinatus, trapezius (three parts), deltoid (two parts) and pectoralis major. All muscles participated in the MVC tests performed, and its was not possible to suggest a single recommended test for each muscle. Differences in normalized EMG median values ranging up to 30% of MVC were found between linear and curvilinear normalization methods. Short-term repeatability of normalization based on a contraction with gradually increasing force was good. Arm posture affected the relationships between shoulder load moment and EMG activity of all muscles studied. Arm posture did not, however, have a significant effect on the estimated amplitude probability distribution functions during the simulated work task. Therefore, at least for the tasks studied, the principle of normalizing in the middle position of the range of movement was deemed acceptable.  相似文献   
10.
儿童最大有氧活动能力的发展特征   总被引:4,自引:1,他引:3  
本文报告了我国463名10-19岁儿童青少年的最大有氧活动能力的发展特征。在青春早期,男女童的最大吸氧量绝对值均随年龄增长而增加,男童由1.75升/分增至3.10升/分,女童由1.44升/分增至2.07升/分,女童增长较少;以后女童即稳定于这一水平,男童仍略有增长。按身高及按最大心率计标的相对值与其有相似的特征。按体重和瘦体重计算的相对值,在男女童都未见随年龄增长的规律。男童VO2max绝对值及各  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号