首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1995年   2篇
  1993年   1篇
  1992年   1篇
  1985年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Stimulation of the spinal cord of the electric fish Gymnotus carapo, evoked an abrupt increase in the discharge rate of the electric organ. At the maximum of this response, the rate increased an average of 26 ± 11.8%. The duration of the response was 4.9 ± 2.12 s; its latency was 10.4 ± 1.1 ms. Activation of the Mauthner axon played a decisive role in this phenomenon as indicated by the following: (1) recordings from the axon cap of the Mauthner cell demonstrated that the response was evoked if the Mauthner axon was antidromically activated and (2) a response that was similar to that produced by spinal cord stimulation, was elicited by intracellular stimulation of either Mauthner cell. Stimulation of the eighth nerve could also increase the discharge rate of the electric organ. The effect was greater if a Mauthner cell action potential was elicited. The findings described in the present report, indicate the existence of a functional connection between the Mauthner cell and the electromotor system in Gymnotus carapo. This connection may function to enhance the electrolocative sampling of the environment during Mauthner-cell mediated behaviors. This is a novel function for the Mauthner cell.Abbreviations EHP extrinsic hyperpolarizing potential - EOD electric organ discharge - M-AIR Mauthner initiated abrupt increase in rate - M-cell Mauthner cell - M-axon Mauthner axon - PM pacemaker nucleus - PM-cell pacemaker cell - PPn prepacemaker nucleus - SPPn sublemniscal prepacemaker nucleus  相似文献   
2.
迷走神经感觉输入诱发的鲫鱼Mauthner细胞胞内电位变化   总被引:5,自引:0,他引:5  
Liu LM  Xie Y  Yu F  Zhang MX 《生理学报》2001,53(4):252-256
实验运用微电极穿刺技术,初步探索了刺激鲫鱼右侧迷走神经在双侧Mauthner(M)细胞胞体诱发的胞内电位变化。结果表明:(1)直接刺激鲫鱼右侧迷走神经,可在同侧或对侧M细胞胞体记录到一种短潜伏期、长持续时间、分级的、复合的突触后电位(postsynaptic potentials,PSPs)。此PSPs表现出明显的强度依从性和频率依赖性。(2)刺激迷走神经诱发的PSPs可使逆向锋电位的幅度降低。(3)肌注士的宁后,PSPs的幅度增高、平均持续时间增加、峰值前移。并且可爆发两个以上的动作电位,上述结果提示:迷走神经到M细胞的通路可能 是由长短不等的神经链群组成的。且此通路中不仅包含有兴奋性成分还包含有抑制性成分,而兴奋和抑制之间的相互关系可能起着调节M细胞兴奋性的作用。  相似文献   
3.
We studied the electrophysiological characteristics of Mauthner neurons (MN) in in vitro preparations of the medulla fragments of goldfish fries. The characteristics of extracellularly recorded responses of MN were found to be close to those usually recorded in vivo. It was demonstrated that in vitro intracellular microelectrode recording of MN activity in goldfish fries is, in principle, possible. The main experimental approaches for successful intracellular recording from such objects have been developed, and the possible artifacts met in the course of the experiments, as well as the parameters of stimulation, have been identified.Neirofiziologiya/Neurophysiology, Vol. 36, No. 4, pp. 288–296, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   
4.
5.
Using grey mullet Mugil cephalus as a model species, the hypothesis that escape latency increases with body size was tested. Minimum escape latency was c . 10 ms (mean ± s . d . 18·1 ± 13·7 ms; range 8–72 ms) and was independent of body size.  相似文献   
6.
Moshkov  D. A.  Pavlik  L. L.  Tiras  N. R.  Dzeban  D. A.  Mikheeva  I. B. 《Neurophysiology》2003,35(5):361-370
We examined changes in the ultrastructure of afferent mixed synapses on the membrane of Mauthner neurons (M cells) of the goldfish, which were related to two functional states, long-term potentiation (LTP) of the electrotonic response (a model form of the memory trace) and adaptation (resistivity to fatigue resulting from long-lasting motor training and considered a natural form of the memory trace manifested on the neuronal level). LTP was induced in medullary slices using high-frequency electrical stimulation of the afferent input. Adaptation was produced using natural vestibular stimulation (everyday motor training, which modified motor behavior of the fish and function of the M cell). It was supposed that if the LTP phenomenon is involved in the formation of natural memory, both the adaptation and the LTP states should be accompanied by similar specific structural modifications. Indeed, it was found that in both cases the number of fibrillar bridges in the gaps of desmosome-like contacts (DLC) in the mixed synapses on the M cell surface demonstrated an about twofold increase. These bridges are known to include actin filaments, which function as conductors of cationic signals; thus, the LTP-related increase in the density of bridges corresponds to increased efficacy of electrotonic coupling via mixed synapses. Such a structural correlate of LTP, which probably has the same functional significance in mixed synapses of the adapted M cells, allows us to suppose that LTP is a natural property of the nervous system. The LTP-type intensification of the relay function of mixed synapses, which corresponds to adaptation, is probably a compensatory rearrangement allowing M cells to maintain some balance of the synaptic influences and, at the same time, to remain in a stable and plastic state; this is necessary for stable functioning under changing environmental conditions.  相似文献   
7.
Mauthner cells (M-cells) are large reticulospinal neurons located in the hindbrain of teleost fish. They are key neurons involved in a characteristic behavior known as the C-start or escape response that occurs when the organism perceives a threat. The M-cell has been extensively studied in adult goldfish where it has been shown to receive a wide range of excitatory, inhibitory and neuromodulatory signals1. We have been examining M-cell activity in embryonic zebrafish in order to study aspects of synaptic development in a vertebrate preparation. In the late 1990s Ali and colleagues developed a preparation for patch clamp recording from M-cells in zebrafish embryos, in which the CNS was largely intact2,3,4. The objective at that time was to record synaptic activity from hindbrain neurons, spinal cord neurons and trunk skeletal muscle while maintaining functional synaptic connections within an intact brain-spinal cord preparation. This preparation is still used in our laboratory today. To examine the mechanisms underlying developmental synaptic plasticity, we record excitatory (AMPA and NMDA-mediated)5,6 and inhibitory (GABA and glycine) synaptic currents from developing M-cells. Importantly, this unique preparation allows us to return to the same cell (M-cell) from preparation to preparation to carefully examine synaptic plasticity and neuro-development in an embryonic organism. The benefits provided by this preparation include 1) intact, functional synaptic connections onto the M-cell, 2) relatively inexpensive preparations, 3) a large supply of readily available embryos 4) the ability to return to the same cell type (i.e. M-cell) in every preparation, so that synaptic development at the level of an individual cell can be examined from fish to fish, and 5) imaging of whole preparations due to the transparent nature of the embryos.  相似文献   
8.
Predatory fish sometimes capture a prey fish first by striking it from the side, allowing the predator to consume the stunned prey head first. The rapid body flexion that the predator uses to stun its prey is similar to the “C” shaped maneuver (“C-bend”) that many fish species use when performing a C-start escape response. For most species, one of the two Mauthner neurons initiates the C-start and, together with other reticulospinal neurons, their activity determines the extent of the bend and the ultimate trajectory of the fish. Reported here is initial evidence of previously undescribed behaviors where goldfish strike an object while executing voluntary C-bends that are similar to their C-start escape responses. The overlapping distributions of turn durations, turn angles, and angular velocities suggest that at least some voluntary C-bends are initiated by the Mauthner neuron. This implies that the Mauthner neuron can be activated voluntarily in the absence of predator- or feeding-associated releasing stimuli.  相似文献   
9.
《Developmental neurobiology》2017,77(12):1385-1400
Sonic hedgehog (Shh) signaling plays a major role in vertebrate development, from regulation of proliferation to the patterning of various organs. In amniotes, Shh affects dorsoventral patterning in the inner ear but affects anteroposterior patterning in teleost ears. It remains unknown how altered function of Shh relates to morphogenetic changes that coincide with the evolution of limbs and novel auditory organs in the ear. In this study, we used the tetrapod, Xenopus laevis , to test how increasing concentrations of the Shh signal pathway antagonist, Vismodegib, affects ear development. Vismodegib treatment dose dependently alters the development of the ear, hypaxial muscle, and indirectly the Mauthner cell through its interaction with the inner ear afferents. Together, these phenotypes have an effect on escape response. The altered Mauthner cell likely contributes to the increased time to respond to a stimulus. In addition, the increased hypaxial muscle in the trunk likely contributes to the subtle change in animal C‐start flexion angle. In the ear, Vismodegib treatment results in decreasing segregation between the gravistatic sensory epithelia as the concentration of Vismodegib increases. Furthermore, at higher doses, there is a loss of the horizontal canal but no enantiomorphic transformation, as in bony fish lacking Shh. Like in amniotes, Shh signaling in frogs affects dorsoventral patterning in the ear, suggesting that auditory sensory evolution in sarcopterygians/tetrapods evolved with a shift of Shh function in axis specification. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1385–1400, 2017  相似文献   
10.
Fast excitatory synaptic transmission in the CNS is mediated by the neurotransmitter glutamate, binding to and activating AMPA receptors (AMPARs). AMPARs are known to interact with auxiliary proteins that modulate their behavior. One such family of proteins is the transmembrane AMPA receptor‐related proteins, known as TARPs. Little is known about the role of TARPs during development, or about their function in non‐mammalian organisms. Here we report the presence of TARPs, specifically the prototypical TARP, stargazin, in developing zebrafish. We find that zebrafish express two forms of stargazin, Cacng2a and Cacng2b from as early as 12‐h post fertilization (hpf). Knockdown of Cacng2a and Cacng2b via splice‐blocking morpholinos resulted in embryos that exhibited deficits in C‐start escape responses, showing reduced C‐bend angles, smaller tail velocities and aberrant C‐bend turning directions. Injection of the morphants with Cacng2a or 2b mRNA rescued the morphological phenotype and the synaptic deficits. To investigate the effect of reduced Cacng2a and 2b levels on synaptic physiology, we performed whole cell patch clamp recordings of AMPA mEPSCs from zebrafish Mauthner cells. Knockdown of Cacng2a results in reduced AMPA currents and lower mEPSC frequencies, whereas knockdown of Cacng2b displayed no significant change in mEPSC amplitude or frequency. Non‐stationary fluctuation analysis confirmed a reduction in the number of active synaptic receptors in the Cacng2a but not in the Cacng2b morphants. Together, these results suggest that Cacng2a is required for normal trafficking and function of synaptic AMPARs, while Cacng2b is largely non‐functional with respect to the development of AMPA synaptic transmission. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 487–506, 2016  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号