首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   3篇
  国内免费   4篇
  2024年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   7篇
  2012年   2篇
  2011年   3篇
  2009年   5篇
  2008年   7篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   7篇
  2000年   11篇
  1999年   7篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
1.
A method is presented for the rapid in vitro propagation of cassava (Manihot esculenta Crantz). Nodal explants were induced to grow as multiple-shoot cultures on a medium containing 1.0 M 6-benzylamino purine (BAP), supplemented with 0.25 M -naphthaleneacetic acid (NAA). Nodes were removed from the shoots after three weeks of growth and subcultured on fresh culture medium. An average of 7.0 nodes were produced from each explanted node after three weeks in culture. Nodal explants were transferred to a medium containing 2.5 M indole-3-butyric acid (IBA) to improve root initiation on the developing plantlets. Plant establishment was possible upon transfer to soil. In vitro propagation offers enhanced rates of multiplication over more conventional methods of propagation. In addition, in vitro propagation facilitates the storage and international exchange of cassava germplasm.  相似文献   
2.
Cassava fertility and seed viability are frequently low, which can be a disadvantage in a breeding programme. An embryo culture method is described whereby embryonic axes are excised from mature seeds and placed on a culture medium containing 1.23 M indolebutyric acid (IBA) at 30°C under continuous light. The number of plants recovered by embryo culture was much greater than the number recovered from conventional seed germination procedures.  相似文献   
3.
Multiple shoots were produced from nodal explants of cassava (Manihot esculenta Crantz) by a two-step procedure: a 6- to 8-day exposure to 0.11–0.22 µM thidiazuron (TDZ) in liquid Murashige and Skoog (MS) medium followed by culture on agar-solidified MS medium supplemented with 2.2 µM 6-benzyladenine (BA) and 1.6 M gibberellic acid (GA3). TDZ caused the nodal explants to expand and this expansion (growth) continued during culture with BA and GA3. From this expanded explant, clusters of buds and fasciated stems developed continuously and these gave rise to shoots. The shoot proliferation process was open-ended, yielding an average of 31.5 shoots per nodal explant after 10 weeks of culture with genotype CG 1–56. A positive response was also obtained from seven other genotypes evaluated with this protocol.Abbreviations BA 6-benzyladenine - BM basal medium - DPU 1,3-diphenylurea - GA3 gibberellie acid - 2iP isopentenyladenine - MSM multiple shoot medium - NAA 1-naphthaleneacetic acid - PGR plant growth regulator - TDZ thidiazuron - Z zeatin  相似文献   
4.
5.
A multilocational field experiment to determine the influence of cassava growth and development on tuberous root rots in Onne and Sabongidda-Ora humid forests and in the Ibadan derived savanna of Nigeria was carried out from June 2003 to November 2005. Healthy cassava stems of TME-1 (local), TMS 30572 and TMS 4 (2) 1425 (both improved) were planted in a randomised complete block design with three replications. The experiment was repeated and the data collected were statistically analysed using the general linear model statistical procedures with the SAS system for Windows. Experimental result showed tuberous root rot incidence and severity to be pronounced at 12 months after planting in Onne and Sabongidda-Ora humid forests but less at the Ibadan derived savanna. Local TME-1 variety had the highest root rot incidence of 53% and severity of 21% while improved TMS 4(2)1425 variety had the least root rot incidence and severity at 0% each.  相似文献   
6.
7.
It is widely believed that the malaria vector Anopheles gambiae Giles (Diptera: Culicidae) rarely or never feeds on sugar in nature. If so, the need for supplemental blood-feeding may be increased and this would help to explain why it is such an efficient malaria vector. Nonetheless, both sexes of this mosquito species readily imbibe and digest sugar solutions, and sugar is a staple of laboratory colonies. In this study, we investigated whether An. gambiae will feed on the extra-floral nectar of three common peridomestic plants in Africa, and on honeydew of the mealybug Pseudococcus longispinus (Targioni-Tozetti) (Hemiptera: Homoptera: Pseudococcidae), and how this affects survivorship. We found that both males and females of An. gambiae provided with vegetative parts of cassava (Manihot esculenta Crantz) survived as well (x = 26.3 and 19.2 days, respectively) as they did on 50% sucrose solution (x = 29.7 and 24.3 days, respectively) and much longer than they did on water alone (x = 1.8 days, both sexes). Females provided with mealybug honeydew also lived substantially longer (x = 16.5 days) than those on water alone. Males and females provided with vegetative parts of castorbean (Ricinus communis L.) also survived much longer (x = 12.7 and 7.8 days, respectively) than on water, but those provided with flowering lantana (Lantana camara L.) did not. Anthrone tests of females after one night of exposure to these potential energy sources confirmed that they obtained fructose from cassava, from mealybug honeydew, and from non-flowering castorbean, but not from lantana or from castorbean lacking its petiolar nectaries. Previous laboratory studies had shown that sugar availability affects the survival and biting frequency of An. gambiae. It now appears that this mosquito can locate natural sources of plant sugar readily and utilize them effectively. Nectar-producing plants in the domestic environment may play a significant role in this mosquito's energy budget and malaria vectorial capacity.  相似文献   
8.
BACKGROUND AND AIMS: Control of diseases in the key tropical staple, cassava, is dependent on resistant genotypes, but the innate mechanisms are unknown. The aim was to study phenylpropanoids and associated enzymes as possible defence components. METHODS: Phenylalanine ammonia-lyase (PAL), phenylpropanoids and peroxidases (POD) were investigated in elicited cassava suspension cells and leaves. Yeast elicitor was the most effective of several microbial and endogenous elicitors. Fungitoxicity was determined against the cassava pathogens Fusarium solani, F. oxysporum and the saprotroph Trichoderma harzianum. KEY RESULTS: A single and rapid (> or =2-3 min) oxidative burst, measured as hydrogen peroxide, occurred in elicited cells. PAL activity was induced maximally at 15 h and was preceded by PAL mRNA accumulation, which peaked at 9 h. Symplasmic POD activity increased four-fold in cells, 48 h post-elicitation. POD isoforms (2-7 isoforms, pI 3.1-8.8) were detected in elicited and unelicited cells, extracellular medium and leaves but two extracellular isoforms were enhanced post-elicitation. Also expression of a cassava peroxidase gene MecPOD1 increased in elicited cells. Only anionic forms oxidized scopoletin, with highest activity by isoform pI 3.6, present in all samples. Unidentified phenolics and possibly scopolin increased post-elicitation, but there was no enhancement of scopoletin, rutin or kaempferol-3-O-rutinoside concentration. Fungal germ tube elongation was inhibited more than germination by esculetin, ferulic acid, quercetin and scopoletin. T. harzianum was generally more sensitive than the pathogens and was inhibited by > or =50 microg mL(-1) of ferulic acid and quercetin and > or =10 microg mL(-1) of scopoletin. CONCLUSIONS: Phenolic levels in cells were not enhanced and were, theoretically, too low to be inhibitory. However, in combination and when oxidized they may contribute to defence, because oxidation of esculetin and scopoletin by peroxidase and of esculetin by tyrosinase enhanced their fungitoxicity up to 20-fold.  相似文献   
9.
Cassava (Manihot esculenta, Crantz) roots are the primary source of calories for more than 500 million people, the majority of whom live in the developing countries of Africa. Cassava leaves and roots contain potentially toxic levels of cyanogenic glycosides. Consumption of residual cyanogens (linamarin or acetone cyanohydrin) in incompletely processed cassava roots can cause cyanide poisoning. Hydroxynitrile lyase (HNL), which catalyses the conversion of acetone cyanohydrin to cyanide, is expressed predominantly in the cell walls and laticifers of leaves. In contrast, roots have very low levels of HNL expression. We have over-expressed HNL in transgenic cassava plants under the control of a double 35S CaMV promoter. We show that HNL activity increased more than twofold in leaves and 13-fold in roots of transgenic plants relative to wild-type plants. Elevated HNL levels were correlated with substantially reduced acetone cyanohydrin levels and increased cyanide volatilization in processed or homogenized roots. Unlike acyanogenic cassava, transgenic plants over-expressing HNL in roots retain the herbivore deterrence of cyanogens while providing a safer food product.  相似文献   
10.
Cyanogenic glucosides are amino acid-derived defence compounds found in a large number of vascular plants. Their hydrolysis by specific β-glucosidases following tissue damage results in the release of hydrogen cyanide. The cyanogenesis deficient1 (cyd1) mutant of Lotus japonicus carries a partial deletion of the CYP79D3 gene, which encodes a cytochrome P450 enzyme that is responsible for the first step in cyanogenic glucoside biosynthesis. The genomic region surrounding CYP79D3 contains genes encoding the CYP736A2 protein and the UDP-glycosyltransferase UGT85K3. In combination with CYP79D3, these genes encode the enzymes that constitute the entire pathway for cyanogenic glucoside biosynthesis. The biosynthetic genes for cyanogenic glucoside biosynthesis are also co-localized in cassava (Manihot esculenta) and sorghum (Sorghum bicolor), but the three gene clusters show no other similarities. Although the individual enzymes encoded by the biosynthetic genes in these three plant species are related, they are not necessarily orthologous. The independent evolution of cyanogenic glucoside biosynthesis in several higher plant lineages by the repeated recruitment of members from similar gene families, such as the CYP79s, is a likely scenario.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号