首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  11篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  1976年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Spermiogenesis, the haploid phase of spermatogenesis, is characterised by a dramatic cytodifferentiation of spermatids. The two major steps, nuclear shaping and cytoplasmic reorganisation of the organelles, rely on an extensive remodelling of the microtubule cytoskeleton. Folding of alpha- and beta-tubulin is mediated by the cytoplasmic chaperonin containing TCP-1 (CCT), highly expressed in testis. We studied CCT cellular distribution throughout spermatogenesis by immunofluorescence and immunoelectron microscopy. We unveil two main cytoplasmic localisations for CCT: at the centrosome and at the microtubules of the manchette, a structure unique to male germ cells. Both structures are essential for spermatid differentiation and may require CCT function. Although CCT is essentially cytoplasmic, a few reports suggest that a subset may have a nuclear localisation. We demonstrate that in the nucleus of germline and somatic cells, part of CCT associates to heterochromatin. In interphase cells, CCT seems generally confined to constitutive heterochromatin. Nevertheless, in condensing nucleus of future spermatozoon, it is also associated with chromatin undergoing compaction. Finally, in fully-condensed mitotic chromosomes, CCT is located all along the chromosomes. Our finding that CCT is associated with constitutive heterochromatin and to compacting chromatin raises the possibility that it may be implicated in maintenance and remodelling of heterochromatin.  相似文献   
2.

Background

We previously cloned the Ssp411 gene. We found that the Ssp411 protein is predominantly expressed in elongated spermatids in the rat testis in a stage-dependent manner. Although our findings strongly suggested that Ssp411 might play an important role in mammalian spermatogenesis, this hypothesis has not been studied.

Methods

We first used real-time PCR, Western blotting and immunohistochemistry to confirm that the expression pattern of Ssp411 in several murine tissues is similar to its expression pattern in corresponding rat tissues. To better understand the roles of Ssp411 in male reproduction in vivo, we identified and characterized an Ssp411 expression-disrupted murine strain (Ssp411PB/PB) that was generated by piggyBac (PB) transposon insertion. We studied Ssp411-interacting proteins using proteome microarray, co-IP and GST pull-down assay.

Results

Both Ssp411 mRNA and protein were detected exclusively in spermatids after step 9 during spermiogenesis in testis. Phenotypic analysis suggested that only Ssp411PB/PB males are sterile. These males have smaller testes, reduced sperm counts, decreased sperm motility and deformed spermatozoa. Microscopy analysis indicated that the manchette, a structurally reshaped sperm head, is aberrant in Ssp411PB/PB spermatids. The results of proteome microarray analysis and GST pull-down assays suggested that Ssp411 participates the ubiquitin-proteasome system by interacting with PSMC3. This has been reported to be manchette-associated and important for the head shaping of spermatids.

Conclusions

Our study suggested that Ssp411 is required for spermiogenesis. It seems to play a role in sperm head shaping. The lack of Ssp411 causes sperm deformation and results in male infertility.

General significance

Ssp411PB/PB mouse strain is an animal model of idiopathic oligoasthenoteratozoospermia (iOAT), and the gene may represent a therapeutic target for iOAT patients.  相似文献   
3.
During mammalian spermatogenesis, the diploid spermatogonia mature into haploid spermatozoa through a highly controlled process of mitosis, meiosis and post-meiotic morphological remodeling (spermiogenesis). Despite important progress made in this area, the molecular mechanisms underpinning this transformation are poorly understood. Our analysis of the expression and function of the putative serine–threonine kinase Fused (Fu) provides critical insight into key steps in spermatogenesis. In this report, we demonstrate that conditional inactivation of Fu in male germ cells results in infertility due to diminished sperm count, abnormal head shaping, decapitation and motility defects of the sperm. Interestingly, mutant flagellar axonemes are intact but exhibit altered periaxonemal structures that affect motility. These data suggest that Fu plays a central role in shaping the sperm head and controlling the organization of the periaxonemal structures in the flagellum. We show that Fu localizes to multiple tubulin-containing or microtubule-organizing structures, including the manchette and the acrosome–acroplaxome complex that are involved in spermatid head shaping. In addition, Fu interacts with the outer dense fiber protein Odf1, a major component of the periaxonemal structures in the sperm flagellum, and Kif27, which is detected in the manchette. We propose that disrupted Fu function in these structures underlies the head and flagellar defects in Fu-deficient sperm. Since a majority of human male infertility syndromes stem from reduced sperm motility and structural defects, uncovering Fu?s role in spermiogenesis provides new insight into the causes of sterility and the biology of reproduction.  相似文献   
4.
《Tissue & cell》2016,48(6):605-615
Head shaping in mammalian sperm is regulated by a number of factors including acrosome formation, nuclear condensation and the action of the microtubular manchette. A role has also been suggested for the attendant Sertoli cells and the perinuclear theca (PT). In comparison, relatively little information is available on this topic in birds and the presence of a PT per se has not been described in this vertebrate order. This study revealed that a similar combination of factors contributed to head shaping in the ostrich, emu and rhea, although the Sertoli cells seem to play a limited role in ratites. A fibro-granular structure analogous to the mammalian PT was identified, consisting of sub- and post-acrosomal components. The latter was characterized by stage-specific finger-like projections that appeared to emanate from the cytoplasmic face of the nuclear envelope. They were particularly obvious beneath the base of the acrosome, and closely aligned, but not connected to, the manchette microtubules. During the final stages of chromatin condensation and elongation of the sperm head the projections abruptly disappeared. They appear to play a role in stabilizing the shape of the sperm head during the caudal translocation of the spermatid cytoplasm.  相似文献   
5.
The Spatial gene is expressed in highly polarized cell types, such as epithelial cells in the thymus, neurons in the brain and germ cells in the testis. In this study, we report the characterization and distribution of Spatial proteins during mouse spermatogenesis. Besides Spatial-epsilon and -delta, we show that the newly described short isoform Spatial-beta is expressed specifically in round spermatids. Using indirect immunofluorescence, we detected Spatial in the cytosol of the early round spermatid. By the end stages of round spermatids, Spatial is concentrated at the opposite face of the acrosome near the nascent flagellum and in the manchette during the elongation process. Finally in mature sperm, Spatial persists in the principal piece of the tail. Moreover, we found that Spatial colocalizes with KIF17b, a testis-specific isoform of the brain kinesin-2 motor KIF17. This colocalization is restricted to the manchette and the principal piece of the sperm tail. Further, coimmunoprecipitation experiments of native proteins from testis lysates confirmed Spatial-KIF17b association through the long Spatial-epsilon isoform. Together, these findings imply a function of Spatial in spermatid differentiation as a new cargo of kinesin KIF17b, in a microtubule-dependent mechanism specific to the manchette and the principal piece of the sperm tail.  相似文献   
6.
Summary The manchette or caudal tube has been examined in Stage 14 rat spermatids. The microtubules of the caudal tube have been found to be partially sheathed by smooth endoplasmic reticulum which appears to be continuous with the outer nuclear membrane of the redundant nuclear envelope. The microtubules in caudal regions of the manchette have been noted to be interconnected by links of unusual size and morphology. It is suggested that the caudal tube consists at this stage of development of two structures, membrane and microtubules and that the links between the microtubules appear to play a role in the structural order noted in the position of the tubules of the manchette. The possible significance of these links in relation to motility is discussed.Supported by a grant to E. A. MacKinnon by the Medical Research Council of Canada.  相似文献   
7.
Summary Links unusual for their length and variable morphology have been described between manchette microtubules in late stages of rat spermiogenesis. In earlier stages of rat spermiogenesis obvious links longer than 160 Å are rare, the majority being 80 or 120 Å in length. The most easily discernible geometric pattern in cross-sections of assemblies of manchette microtubules in intermediate stages of rat spermiogenesis is that of linear arrays sometimes resulting in long and irregularly folded chains of closely linked microtubules. Colcemid disrupts these arrays and is responsible for the formation of more complex geometric patterns. Six hours after drug administration the manchette is dramatically reduced in length. Sheet-like links of variable dimensions and >160 Å in length interconnect not only microtubules but C-type microtubules as well as other links. These links are similar in morphology to those found in later stages of rat spermiogenesis. It is suggested that the formation of these links may perhaps be dependent upon aspects of microtubule disassembly.Supported by a grant to E. A. MacKinnon by the Medical Research Council of Canada.  相似文献   
8.
SUMO-1 is a member of a ubiquitin-related family of proteins that mediates important post-translational effects affecting diverse physiological functions. Whereas SUMO-1 is detected in the testis, little is known about its reproductive role in males. Herein, cell-specific SUMO-1 was localized in freshly isolated, purified male germ cells and somatic cells of mouse and rat testes using Western analysis, high-resolution single-cell bioimaging, and in situ confocal microscopy of seminiferous tubules. During germ cell development, SUMO-1 was observed at low but detectable levels in the cytoplasm of spermatogonia and early spermatocytes. SUMO-1 appeared on gonosomal chromatin during zygotene when chromosome homologues pair and sex chromatin condensation is initiated. Striking SUMO-1 increases in the sex body of early-to-mid-pachytene spermatocytes correlated with timing of additional sex chromosome condensation. Before the completion of the first meiotic division, SUMO-1 disappeared from the sex body when X and Y chromosomal activity resumed. Together, these data indicate that sumoylation may be involved in non-homologous chromosomal synapsis, meiotic sex chromosome inactivation, and XY body formation. During spermiogenesis, SUMO-1 localized in chromocenters of certain round spermatids and perinuclear ring and centrosomes of elongating spermatids, data implicating SUMO-1 in the process of microtubule nucleation and nuclear reshaping. STAT-4, one potential target of sumoylation, was located along the spermatid nuclei, adjacent but not co-localized with SUMO-1. Androgen receptor-positive Leydig, Sertoli, and some peritubular myoepithelial cells express SUMO-1, findings suggesting a role in modulating steroid action. Testicular SUMO-1 expression supports its specific functions in inactivation of sex chromosomes during meiosis, spermatid microtubule nucleation, nuclear reshaping, and gene expression.  相似文献   
9.
Spermiogenesis is the final phase during sperm cell development in which round spermatids undergo dramatic morphological changes to generate spermatozoa. Here we report that the serine/threonine kinase Stk33 is essential for the differentiation of round spermatids into functional sperm cells and male fertility. Constitutive Stk33 deletion in mice results in severely malformed and immotile spermatozoa that are particularly characterized by disordered structural tail elements. Stk33 expression first appears in primary spermatocytes, and targeted deletion of Stk33 in these cells recapitulates the defects observed in constitutive knockout mice, confirming a germ cell-intrinsic function. Stk33 protein resides in the cytoplasm and partially co-localizes with the caudal end of the manchette, a transient structure that guides tail elongation, in elongating spermatids, and loss of Stk33 leads to the appearance of a tight, straight and elongated manchette. Together, these results identify Stk33 as an essential regulator of spermatid differentiation and male fertility.  相似文献   
10.
BackgroundKnowledge of spermiogenesis in reptiles, especially in lizards, is very limited. Lizards found in Arabian deserts have not been considered for detailed studies due to many reasons and the paucity of these animals. Therefore, we designed a study on the differentiation and morphogenesis of spermiogenesis, at an ultrastructural level, in a rare lizard species, Scincus scincus.ResultsThe spermiogenesis process includes the development of an acrosomal vesicle, aggregation of acrosomal granules, formation of subacrosomal nuclear space, and nuclear elongation. A role for manchette microtubules was described in nuclear shaping and organelle movement. During head differentiation, the fine granular chromatin of the early spermatid is gradually replaced by highly condensed contents in a process called chromatin condensation. Furthermore, ultrastructural features of sperm tail differentiation in S. scincus were described in detail. The commencement was with caudal migration toward centrioles, insertion of the proximal centriole in the nuclear fossa, and extension of the distal centrioles to form the microtubular axoneme. Subsequently, tail differentiation consists of the enlargement of neck portion, middle piece, the main and end pieces.ConclusionsThis study aids in the understanding of different aspects of spermiogenesis in the lizard family and unfurls evolutionary links within and outside reptiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号