首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2683篇
  免费   329篇
  国内免费   60篇
  3072篇
  2024年   13篇
  2023年   65篇
  2022年   80篇
  2021年   125篇
  2020年   167篇
  2019年   159篇
  2018年   134篇
  2017年   123篇
  2016年   130篇
  2015年   152篇
  2014年   229篇
  2013年   281篇
  2012年   161篇
  2011年   201篇
  2010年   118篇
  2009年   194篇
  2008年   133篇
  2007年   135篇
  2006年   111篇
  2005年   95篇
  2004年   65篇
  2003年   20篇
  2002年   27篇
  2001年   7篇
  2000年   17篇
  1999年   23篇
  1998年   9篇
  1997年   7篇
  1996年   18篇
  1995年   11篇
  1994年   5篇
  1993年   8篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1984年   8篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
排序方式: 共有3072条查询结果,搜索用时 15 毫秒
1.
A method is proposed for assessing the biocidal efficacy of water-dispersed nanoparticles of silver. It is based on negative chemotaxis of the plasmodia of the slime mold Physarum polycephalum. Biocidal and repellent effects were compared for silver nanoparticles, Ag+ ions, and AOT in solution and in the agar gel. In such characteristics as increasing the period of auto-oscillations of contractile activity, decreasing the area of spreading on substrate, and substrate preference in spatial tests, silver nanoparticles proved to be substantially more effective than Ag+ and AOT. The lethal concentrations of the nanoparticles were close to those found earlier for bacteria and viruses. The chemotactic tests allow quantitative assessment of the biological reaction and monitoring its dynamics; in resolution, they are superior to the tests based on the lethal action of biocidal agents.  相似文献   
2.
Aquaspirillum magnetotacticum MS-1 cells cultured microaerobically (dissolved O2 tension 1% of saturation), expressed proteins with superoxide dismutase (SOD) activity. The majority (roughly 95%) of total cell superoxide dismutase activity was located in the cell periplasm with little or no activity in the cell cytoplasm. Irontype SOD (FeSOD) contributed 88% of the total activity activity detected, although a manganese-type SOD (MnSOD) was present in the periplasm as well. Cells cultured at a higher dissolved O2 tension (10% of saturation) expressed increased activity of the MnSOD relative to that of the FeSOD.  相似文献   
3.
4.
Silver nanoparticles (AgNPs) were biosynthesized using fungal extract of Trametes trogii, a white rot basidiomycete involved in wood decay worldwide, which produces several ligninolytic enzymes. According to previous studies using fungi, enzymes are involved in nanoparticles synthesis, through the so-called green synthesis process, acting as reducing and capping agents. Understanding which factors could modify nanoparticles’ shape, size and production efficiency is relevant. The results showed that under the protocol used in this work, this strain of Trametes trogii is able to synthesize silver nanoparticles with the addition of silver nitrate (AgNO3) to the fungal extract obtained with an optimal incubation time of 72 h and pH 13, using NaOH to adjust pH. The progress of the reaction was monitored using UV–visible spectroscopy and synthesized AgNPs was characterized by scanning electron microscope (SEM), through in-lens and QBDS detectors, and energy-dispersive X-ray spectroscopy (EDX). Additionally, SPR absorption was modeled using Mie theory and simple nanoparticles and core-shell configurations were studied, to understand the morphology and environment of the nanoparticles. This protocol represents a simple and cheap synthesis in the absence of toxic reagents and under an environmentally friendly condition.  相似文献   
5.
The Optically Detected Magnetic Resonance spectrum of lysozyme has been shown to consist of a multiplet of narrow components, at -1565 MHz, 1585 MHz, and 1620 MHz. The 1585 MHz component is the strongest feature of the spectrum. This is consistent with earlier reports which apparently resolved only this principal component in lysozyme. The linewidths reported here are the narrowest ever reported for tryptophan in proteins. Using Microwave-Induced Phosphorescence techniques, the dominant 1585 MHz line is seen to be coupled to a "narrow" phosphorescence emission component at about 4134A. This component has a bandwidth of about 25A compared to 42A for the normal O-O band for tryptophan in lysozyme.  相似文献   
6.
Abstract: Several studies have reported declines in brain total and free magnesium concentration after a traumatic insult to the CNS. Although the evidence suggests that this magnesium decline is associated with eventual neurologic outcome after trauma, the duration of free magnesium decline and its impact on related bioenergetic variables are relatively unknown. The present study has therefore used phosphorus magnetic resonance spectroscopy to determine the length of time that free magnesium remains suppressed after traumatic brain injury in rats. Immediately after the traumatic event, brain intracellular free magnesium declined to <60% of preinjury values and remained significantly depressed (50 ± 8%; p < 0.001) for 5 days before recovering to preinjury levels by day 8. Cytosolic phosphorylation ratio and mitochondrial oxidative capacity also significantly decreased ( p = 0.008) and increased ( p = 0.002), respectively, after trauma. However, unlike the time of maximum magnesium change, the maximum changes in these bioenergetic variables occurred at 16–24 h after trauma and thereafter remained stable until after the magnesium had recovered. We conclude that free magnesium decline after trauma precedes changes in bioenergetic variables. Furthermore, therapies targeted at reestablishing magnesium homeostasis after trauma may require administration over a 1-week period.  相似文献   
7.
The increasing prevalence of antibiotic resistant bacteria is a significant healthcare crisis with substantial socioeconomic impact on global community. The development of new antibiotics is both costly and time-consuming prompting the exploration of alternative solutions such as nanotechnology which represents opportunities for targeted drug delivery and reduced MIC. However, concerns have arisen regarding genotoxic effects of nanoparticles on human health necessitating an evaluation of nanoparticle induced DNA damage.This study aimed to investigate the antibacterial potential of already prepared, characterized chitosan nanoparticles loaded with carvacrol and their potential synergism with Topoisomerase II inhibitors against S. aureus, E. coli and S. typhi using agar well diffusion, microdilution and checkerboard method. Genotoxicity was assessed through comet assay.Results showed that both alone and drug combinations of varying concentrations exhibited greater zones of inhibition at higher concentrations. Carvacrol nanoparticles combined with ciprofloxacin and doxorubicin significantly reduced MIC compared to the drugs used alone. The MIC50 values for ciprofloxacin were 35.8 µg/ml, 48.74 µg/ml, 35.57 µg/ml while doxorubicin showed MIC50 values of 20.79 µg/ml, 34.35 µg/ml, 25.32 µg/ml against S. aureus, E. coli and S. typhi respectively. The FICI of ciprofloxacin and doxorubicin with carvacrol nanoparticles found ≤ 0.5 Such as 0.44, 0.44,0.48 for ciprofloxacin and 0.45, 0.45, 0.46 for doxorubicin against S. aureus, E. coli and S. typhi respectively revealed the synergistic effect. The analysis of comet assay output images showed alteration of DNA at high concentrations.Our results suggested that carvacrol nanoparticles in combination with Topoisomerase inhibitors may prevent and control the emergence of resistant bacteria with reduced dose.  相似文献   
8.
1.  This study examined spatial learning and memory in breeding adult male and female meadow voles, Microtus pennsylvanicus, and the effects of brief exposure to weak (0.1 mT or 1.0 Gauss rms) 60 Hz magnetic fields on their spatial performance.
2.  There were significant sex differences in the spatial performance of the polygynous meadow voles. Reproductive male voles displayed significantly better spatial learning and retention than reproductive females in a Morris water maze task, whereby individual voles had to learn and remember the location of a submerged hidden platform using extramaze visual cues. Males showed over 9 days of daily blocks of 4 trials both a faster rate and greater overall level of acquisition (shorter latency to find hidden platform) of the spatial task than did the females.
3.  Brief (maximum 5 min) exposure to 60 Hz magnetic fields during acquisition of the water maze task significantly enhanced the spatial performance of both the male and female meadow voles. Females showed a relatively greater facilitation of spatial acquisition and retention than did the males, resulting by day 9 in the elimination of sex differences in water maze performance.
4.  The time-varying magnetic fields may be : (i) functioning as orientation cues and providing directional cues, and/or (ii) affecting neuromodulatory systems that are involved in the mediation of spatial learning and memory. Exposure to weak time-varying magnetic fields has been shown to attenuate the activity of endogenous opioid systems, enhance protein kinase C (PKC) activity, and alter calcium ion flux. These effects have been shown to affect spatial learning and memory and are consistent with an enhancement of water maze performance.
  相似文献   
9.
In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood–brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood–brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.  相似文献   
10.
Liver fibrosis is one of the major liver complications which eventually progresses to liver cirrhosis and liver failure. Cerium oxide nanoparticles, also known as nanoceria (NC) are nanoparticles with potential antioxidant and anti-inflammatory activities. Herein, we evaluated the hepatoprotective and anti-fibrotic effects of nanoceria (NC) against bile duct ligation (BDL) induced liver injury. NC were administered i.p. for 12 days (0.5 and 2 mg/kg) to C57BL/6J mice. The biochemical markers of liver injury, oxidative and nitrosative stress markers, inflammatory cytokines were evaluated. Fibrosis assessment and mechanistic studies were conducted to assess the hepatoprotective effects of NC. Administration of NC proved to significantly ameliorate liver injury as evident by reduction in SGOT, SGPT, ALP and bilirubin levels in the treated animals. NC treatment significantly reduced the hydroxyproline levels and expression of fibrotic markers. In summary, our findings establish the hepatoprotective and anti-fibrotic effects of NC against BDL induced liver injury and liver fibrosis. These protective effects were majorly ascribed to their potential ROS inhibition and antioxidant activities through catalase, superoxide dismutase (SOD)-mimetic properties and auto-regenerating capabilities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号