首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   225篇
  免费   30篇
  国内免费   25篇
  2023年   5篇
  2022年   9篇
  2021年   8篇
  2020年   9篇
  2019年   6篇
  2018年   8篇
  2017年   13篇
  2016年   13篇
  2015年   8篇
  2014年   12篇
  2013年   20篇
  2012年   9篇
  2011年   9篇
  2010年   2篇
  2009年   18篇
  2008年   22篇
  2007年   19篇
  2006年   14篇
  2005年   11篇
  2004年   7篇
  2003年   15篇
  2002年   6篇
  2001年   5篇
  2000年   5篇
  1999年   5篇
  1998年   1篇
  1997年   4篇
  1996年   5篇
  1994年   7篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
排序方式: 共有280条查询结果,搜索用时 15 毫秒
1.
T. M. Bourett  R. J. Howard 《Protoplasma》1991,163(2-3):199-202
Summary We have successfully localized fungal actin for the first time using immuno-electron microscopy and hyphal tips of the rice blast pathogenMagnaporthe grisea. Following ultrarapid freezing, samples were processed in a novel substitution fluid of 10% acrolein in anhydrous ethanol and embedded in LR White resin. A monoclonal anti-actin antibody, previously shown to recognizeM. grisea actin, bound specifically to filasomes concentrated in the peripheral cytoplasm of subapical regions, and to the core-region of the Spitzenkörper.Abbreviations IEM immuno-electron microscopy - TEM transmission electron microscopy  相似文献   
2.
    
TheMagnaporthe grisea repeat (MGR) sequence MGR586 has been widely used for population studies of the rice blast fungus, and has enabled classification of the fungal population into hundreds of genetic lineages. While studying the distribution of MGR586 sequences in strains ofM. grisea, we discovered that the plasmid probe pCB586 contains a significant amount of single-copy DNA. To define precisely the boundary of the repetitive DNA in pCB586, this plasmid and four cosmid clones containing MGR586 were sequenced. Only 740 bp of one end of the 2.6-bp insert in the pCB586 plasmid was common to all clones. DNA sequence analysis of cosmid DNA revealed that all the cosmids contained common sequences beyond the cloning site in pCB586, indicating that the repetitive DNA in the fingerprinting clone is part of a larger element. The entire repetitive element was sequenced and found to resemble an inverted repeat transposon. This putative transposon is 1.86 kb in length and has perfect terminal repeats of 42 bp, which themselves contain direct repeats of 16 bp. The internal region of the transposon possesses one open reading frame which shows similarity at the peptide level to the Pot2 transposon fromM. grisea and Fot1 fromFusarium oxysporum. Hybridization studies using the entire element as a probe revealed that some strains ofM. grisea, whose DNA hybridized to the pCB586 probe, entirely lacked MGR586 transposon sequences.  相似文献   
3.
Magnaporthe grisea causes rice blast, the most important fungal disease of rice. The segregation of genes controlling virulence of M. grisea on rice was studied to establish the genetic basis of cultivar specificity in this host-parasite interaction. Full-sib progeny and parent isolates Guy11 and 2539 of M. grisea were inoculated onto rice (Oryza sativa) cultivar CO39 and five near-isogenic lines (NILs) of CO39. Each NIL contained a different single gene affecting resistance to specific isolates of M. grisea. No differential interactions between NILs and progeny or parents were observed; parents and progeny pathogenic on CO39 were pathogenic on all five NILs. Segregation ratios of 101 full-sib progeny, 117 progeny from full-sib parents, and 109 backcross progeny, indicated a common single gene affecting pathogenicity on CO39 and the five NILs. A subset of the above 327 isolates (43 fullsib progeny, 37 progeny from full-sib parents, and 32 backcross progeny) were inoculated onto rice cultivar 51583; all were pathogenic, indicating that cultivar specificity to CO39 was segregating in this population of isolates. The locus controlling cultivar specificity, named avrCO39, was mapped to chromosome 1 using a subset of the progeny previously used to construct an RFLP map of M. grisea. The closest reported RFLP markers were 11.8 (estimated 260 kb) and 17.2 cM (estimated 380 kb) away and provide starting points on either side of the locus for a chromosome walk to clone the locus.  相似文献   
4.
5.
A transformation method based on a dominant selectable marker (benomyl resistance) was developed for the rice blast fungus Magnaporthe grisea. The heterologous gene for -tubulin from Neurospora crassa (pBT3) was used to obtain benomyl-resistant M. grisea transformants at a frequency of 20 to 30/g of DNA. Control transformations carried out with a plasmid conferring hygromycin resistance or a derivative of pBT3 containing a repetitive DNA sequence, yielded the same frequency of transformation as that of pBT3. Molecular analysis of the transformants indicated multiple integration of the vector DNA.  相似文献   
6.
ABSTRACT

Rice blast caused by Pyricularia oryzae (syn. Magnaporthe oryzae) is a disease devastating to rice. We have studied the Arabidopsis-P. oryzae pathosystem as a model system for nonhost resistance (NHR) and found that SOBIR1, but not BAK1, is a positive regulator of NHR to P. oryzae in Arabidopsis. AGB1 is also involved in NHR. However, the genetic interactions between SOBIR1, BAK1, and AGB1 are uncharacterized. In this study, we delineated the genetic interactions between SOBIR1, BAK1, and AGB1 in NHR to P. oryzae in Arabidopsis and found SOBIR1 and AGB1 independently control NHR to P. oryzae in Arabidopsis pen2-1 mutant plants. Furthermore, XLG2, but not TMM, has a positive role in penetration resistance to P. oryzae in Arabidopsis pen2-1 mutant plants. Our study characterized genetic interactions in Arabidopsis NHR.

Abbreviations: PRR: pattern recognition receptor, RLK: receptor-like kinase, RLP: receptor-like protein, BAK1: BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED RECEPTOR KINASE 1, BIR1: BAK1-INTERACTING RECEPTOR-LIKE KINASE 1, SOBIR1: SUPPRESSOR OF BIR1-1-1, AGB1: ARABIDOPSIS G PROTEIN ß-SUBUNIT 1, XLG2: EXTRA-LARGE G PROTEIN 2  相似文献   
7.
8.
9.
10.
《Autophagy》2013,9(7):1058-1070
The sorting nexins Atg20/Snx42 and Snx41 regulate membrane traffic and endosomal protein sorting and are essential for Cvt and/or pexophagy in yeast. Previously, we showed that macroautophagy is necessary for conidiation in the rice-blast fungus Magnaporthe oryzae. Here, we analyzed the physiological function(s) of selective autophagy in Magnaporthe through targeted deletion of MGG_12832, an ortholog of yeast SNX41 and ATG20/SNX42. Loss of MGG_12832 (hereafter SNX41) abolished conidia formation and pathogenesis in M. oryzae. Snx41-GFP localized as dynamic puncta or short tubules that are partially associated with autophagosomes and/or autophagic vacuoles. PX domain, but not macroautophagy per se, was required for such localization of Snx41-GFP in Magnaporthe. Although not required for nonselective autophagy, Snx41 was essential for pexophagy in Magnaporthe. We identified Oxp1, an ATP-dependent oxoprolinase in the gamma-glutamyl cycle, as a binding partner and potential retrieval target of Snx41-dependent protein sorting. The substrate of Oxp1, 5-oxoproline, could partially restore conidiation in the snx41Δ. Exogenous glutathione, a product of the gamma-glutamyl cycle, significantly restored pathogenicity in the snx41Δ mutant, likely through counteracting the oxidative stress imposed by the host. We propose that the gamma-glutamyl cycle and glutathione biosynthesis are subject to regulation by Snx41-dependent vesicular trafficking, and mediate antioxidant defense crucial for in planta growth and pathogenic differentiation of Magnaporthe at the onset of blast disease in rice.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号