首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
  2020年   1篇
  2019年   2篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Use of multivariate data analysis for the manufacturing of biologics has been increasing due to more widespread use of data-generating process analytical technologies (PAT) promoted by the US FDA. To generate a large dataset on which to apply these principles, we used an in-house model CHO DG44 cell line cultured in automated micro bioreactors alongside PAT with four commercial growth media focusing on antibody quality through N-glycosylation profiles. Using univariate analyses, we determined that different media resulted in diverse amounts of terminal galactosylation, high mannose glycoforms, and aglycosylation. Due to the amount of in-process data generated by PAT instrumentation, multivariate data analysis was necessary to ascertain which variables best modeled our glycan profile findings. Our principal component analysis revealed components that represent the development of glycoforms into terminally galacotosylated forms (G1F and G2F), and another that encompasses maturation out of high mannose glycoforms. The partial least squares model additionally incorporated metabolic values to link these processes to glycan outcomes, especially involving the consumption of glutamine. Overall, these approaches indicated a tradeoff between cellular productivity and product quality in terms of the glycosylation. This work illustrates the use of multivariate analytical approaches that can be applied to complex bioprocessing problems for identifying potential solutions.  相似文献   
2.
Neptunia oleracea is a plant consumed as vegetable and used as a traditional herb to treat several ailments. This study evaluated metabolite variations among N. oleracea leaf and stem subjected to air drying (AD), freeze drying (FD) and oven drying (OD) using proton nuclear magnetic resonance (1H NMR) based metabolomics. The correlation was also studied for the metabolite content with total phenolic content (TPC), DPPH free radical scavenging and α-glucosidase inhibitory activities. A total of 18 metabolites were identified from N. oleracea extracts, including 10 primary metabolites, 5 flavonoids and 3 phenolic acids using NMR. Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) confirmed the presence of the secondary metabolites and revealed the flavonoid derivatives present. All the identified phenolics are first reported from this plant. Multivariate data analysis (MVDA) showed strong correlation between the metabolites with the antioxidant and α-glucosidase inhibitory activities of FD N. oleracea leaves. The compounds suggested to be responsible for the high activity of FD leaves include vitexin-2-O-rhamnoside, catechin, caffeic acid, gallic acid and derivatives of quercetin, kaempferol and myricetin. This study demonstrates that FD N. oleracea leaves are a potential natural source for antioxidant and α-glucosidase inhibitors.  相似文献   
3.
A typical biotech process starts with the vial of the cell bank, ends with the final product and has anywhere from 15 to 30 unit operations in series. The total number of process variables (input and output parameters) and other variables (raw materials) can add up to several hundred variables. As the manufacturing process is widely accepted to have significant impact on the quality of the product, the regulatory agencies require an assessment of process comparability across different phases of manufacturing (Phase I vs. Phase II vs. Phase III vs. Commercial) as well as other key activities during product commercialization (process scale-up, technology transfer, and process improvement). However, assessing comparability for a process with such a large number of variables is nontrivial and often companies resort to qualitative comparisons. In this article, we present a quantitative approach for assessing process comparability via use of chemometrics. To our knowledge this is the first time that such an approach has been published for biotech processing. The approach has been applied to an industrial case study involving evaluation of two processes that are being used for commercial manufacturing of a major biosimilar product. It has been demonstrated that the proposed approach is able to successfully identify the unit operations in the two processes that are operating differently. We expect this approach, which can also be applied toward assessing product comparability, to be of great use to both the regulators and the industry which otherwise struggle to assess comparability.  相似文献   
4.
Control of raw materials based on an understanding of their impact on product attributes has been identified as a key aspect of developing a control strategy in the Quality by Design (QbD) paradigm. This article presents a case study involving use of a combined approach of Near‐infrared (NIR) spectroscopy and Multivariate Data Analysis (MVDA) for screening of lots of basal medium powders based on their impact on process performance and product attributes. These lots had identical composition as per the supplier and were manufactured at different scales using an identical process. The NIR/MVDA analysis, combined with further investigation at the supplier site, concluded that grouping of medium components during the milling and blending process varied with the scale of production and media type. As a result, uniformity of blending, impurity levels, chemical compatibility, and/or heat sensitivity during the milling process for batches of large‐scale media powder were deemed to be the source of variation as detected by NIR spectra. This variability in the raw materials was enough to cause unacceptably large variability in the performance of the cell culture step and impact the attributes of the resulting product. A combined NIR/MVDA approach made it possible to finger print the raw materials and distinguish between good and poor performing media lots. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
5.
Biotech unit operations are often characterized by a large number of inputs (operational parameters) and outputs (performance parameters) along with complex correlations amongst them. A typical biotech process starts with the vial of the cell bank, ends with the final product, and has anywhere from 15 to 30 such unit operations in series. The aforementioned parameters can impact process performance and product quality and also interact amongst each other. Chemometrics presents one effective approach to gather process understanding from such complex data sets. The increasing use of chemometrics is fuelled by the gradual acceptance of quality by design and process analytical technology amongst the regulators and the biotech industry, which require enhanced process and product understanding. In this article, we review the topic of chemometrics applications in biotech processes with a special focus on recent major developments. Case studies have been used to highlight some of the significant applications.  相似文献   
6.
A new two‐dimensional fluorescence sensor system was developed for in‐line monitoring of mammalian cell cultures. Fluorescence spectroscopy allows for the detection and quantification of naturally occurring intra‐ and extracellular fluorophores in the cell broth. The fluorescence signals correlate to the cells’ current redox state and other relevant process parameters. Cell culture pretests with twelve different excitation wavelengths showed that only three wavelengths account for a vast majority of spectral variation. Accordingly, the newly developed device utilizes three high‐power LEDs as excitation sources in combination with a back‐thinned CCD‐spectrometer for fluorescence detection. This setup was first tested in a lab design of experiments study with process relevant fluorophores proving its suitability for cell culture monitoring with LOD in the μg/L range. The sensor was then integrated into a CHO‐K1 cell culture process. The acquired fluorescence spectra of several batches were evaluated using multivariate methods. The resulting batch evolution models were challenged in deviating and “golden batch” validation runs. These first tests showed that the new sensor can trace the cells’ metabolic state in a fast and reliable manner. Cellular distress is quickly detected as a deviation from the “golden batch”.  相似文献   
7.
Biotech unit operations are often characterized by a large number of inputs (operational parameters) and outputs (performance parameters) along with complex correlations among them. A typical biotech process starts with the vial of the cell bank, ends with the final product, and has anywhere from 15 to 30 such unit operations in series. Besides the above‐mentioned operational parameters, raw material attributes can also impact process performance and product quality as well as interact among each other. Multivariate data analysis (MVDA) offers an effective approach to gather process understanding from such complex datasets. Review of literature suggests that the use of MVDA is rapidly increasing, fuelled by the gradual acceptance of quality by design (QbD) and process analytical technology (PAT) among the regulators and the biotech industry. Implementation of QbD and PAT requires enhanced process and product understanding. In this article, we first discuss the most critical issues that a practitioner needs to be aware of while performing MVDA of bioprocessing data. Next, we present a step by step procedure for performing such analysis. Industrial case studies are used to elucidate the various underlying concepts. With the increasing usage of MVDA, we hope that this article would be a useful resource for present and future practitioners of MVDA. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:967–973, 2014  相似文献   
8.
9.
Separation media, in particular chromatography media, is typically one of the major contributors to the cost of goods for production of a biotechnology therapeutic. To be cost‐effective, it is industry practice that media be reused over several cycles before being discarded. The traditional approach for estimating the number of cycles a particular media can be reused for involves performing laboratory scale experiments that monitor column performance and carryover. This dataset is then used to predict the number of cycles the media can be used at manufacturing scale (concurrent validation). Although, well accepted and widely practiced, there are challenges associated with extrapolating the laboratory scale data to manufacturing scale due to differences that may exist across scales. Factors that may be different include: level of impurities in the feed material, lot to lot variability in feedstock impurities, design of the column housing unit with respect to cleanability, and homogeneity of the column packing. In view of these challenges, there is a need for approaches that may be able to predict column underperformance at the manufacturing scale over the product lifecycle. In case such an underperformance is predicted, the operators can unpack and repack the chromatography column beforehand and thus avoid batch loss. Chemometrics offers one such solution. In this article, we present an application of chemometrics toward the analysis of a set of chromatography profiles with the intention of predicting the various events of column underperformance including the backpressure buildup and inefficient deoxyribonucleic acid clearance. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   
10.
Real-time monitoring of cell cultures in bioreactors can enable expedited responses necessary to correct potential batch failure perturbations which may normally go undiscovered until the completion of the batch and result in failure. Currently, analytical technologies are dedicated to real-time monitoring of bioreactor parameters such as pH, dissolved oxygen, and temperature, nutrients such as glucose and glutamine, or metabolites such as lactate. Despite the importance of amino acids as the building blocks of therapeutic protein products, other than glutamine their concentrations are not commonly measured. Here, we present a study into amino acid monitoring, supplementation strategies, and how these techniques may impact the cell growth profiles and product quality. We used preliminary bioreactor runs to establish baselines by determining initial amino acid consumption patterns, the results of which were used to select a pool of amino acids which gets depleted in the bioreactor. These amino acids were combined into blends which were supplemented into bioreactors during a subsequent run, the concentrations of which were monitored using a mass spectrometry based at-line method we developed to quickly assess amino acid concentrations from crude bioreactor media. We found that these blends could prolong culture life, reversing a viable cell density decrease that was leading to batch death. Additionally, we assessed how these strategies might impact protein product quality, such as the glycan profile. The amino acid consumption data were aligned with the final glycan profiles in principal component analysis to identify which amino acids are most closely associated with glycan outcomes.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号