首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2017年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Excess iron accumulation in the brain has been shown to be related to a variety of neurodegenerative diseases. However, identification and characterization of iron compounds in human tissue is difficult because concentrations are very low. For the first time, a combination of low temperature magnetic methods was used to characterize iron compounds in tumour tissue from patients with mesial temporal lobe epilepsy (MTLE). Induced magnetization as a function of temperature was measured between 2 and 140 K after cooling in zero-field and after cooling in a 50 mT field. These curves reveal an average blocking temperature for ferritin of 10 K and an anomaly due to magnetite at 48 K. Hysteresis measurements at 5 K show a high coercivity phase that is unsaturated at 7 T, which is typical for ferritin. Magnetite concentration was determined from the saturation remanent magnetization at 77 K. Hysteresis measurements at various temperatures were used to examine the magnetic blocking of magnetite and ferritin. Our results demonstrate that low temperature magnetic measurements provide a useful and sensitive tool for the characterisation of magnetic iron compounds in human tissue.Published online: March 2005  相似文献   
2.
In spite of the availability of new antiepileptic drugs a considerable number of epilepsy patients still have pharmacoresistant seizures, and thus there is a need for novel approaches. Acetyl-l-carnitine (ALCAR), which delivers acetyl units to mitochondria for acetyl-CoA production, has been shown to improve brain energy homeostasis and protects against various neurotoxic insults. To our knowledge, this is the first study of ALCAR's effect on metabolism in pentylenetetrazole (PTZ) kindled mice. ALCAR or the commonly used antiepileptic drug valproate, was added to the drinking water of mice for 25days, and animals were injected with PTZ or saline three times a week during the last 21days. In order to investigate ALCAR's effects on glucose metabolism, mice were injected with [1-(13)C]glucose 15min prior to microwave fixation. Brain extracts from cortex and the hippocampal formation (HF) were studied using (1)H and (13)C NMR spectroscopy and HPLC. PTZ kindling caused glucose hypometabolism, evidenced by a reduction in both glycolysis and TCA cycle turnover in both brain regions investigated. Glutamatergic and GABAergic neurons were affected in cortex and HF, but the amount of glutamate was only reduced in HF. Slight astrocytic involvement could be detected in the cortex. Interestingly, the dopamine content was increased in the HF. ALCAR attenuated the PTZ induced reduction in [3-(13)C]alanine and the increase in dopamine in the HF. However, TCA cycle metabolism was not different from that seen in PTZ kindled animals. In conclusion, even though ALCAR did not delay the kindling process, it did show some promising ameliorative effects, worthy of further investigation.  相似文献   
3.
Immunoproteasome expression is induced in mesial temporal lobe epilepsy   总被引:1,自引:0,他引:1  
Immunoproteasome has been associated to neurodegenerative and autoimmune diseases as a marker and regulator of inflammatory mechanisms. Its expression in the brain may occur upon neuroinflammation in different cell types and affect a variety of homeostatic and inflammatory pathways including the oxidized protein clearance and the self-antigen presentation. In the present study we investigated the immunoproteasome expression in hippocampi and cortex of patients affected by different histopathological forms of pharmaco-resistent mesial temporal lobe epilepsy. We identified a pathology-specific pattern of immunoproteasome expression, which could provide insight into the complex neuroinflammatory pathogenic components of this disease.  相似文献   
4.
Summary. Mesial temporal lobe epilepsy (MTLE), the most common form of epilepsy, is characterised by cytoarchitectural abnormalities including neuronal cell loss and reactive gliosis in hippocampus. Determination of aberrant cytoskeleton protein expression by proteomics techniques may help to understand pathomechanism that is still elusive. We searched for differential expression of hippocampal proteins by an analytical method based on two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry unambiguously identifying 77 proteins analysed in eight control and eight MTLE hippocampi. Proteins were quantified and we observed 18 proteins that were altered in MTLE. Cytoskeleton proteins tubulin α-1 chain, β-tubulin, profilin II, neuronal tropomodulin were significantly reduced and one actin spot was missing, whereas ezrin and vinculin were significantly increased in MTLE. Proteins of several classes as e.g. antioxidant proteins (peroxiredoxins 3 and 6), chaperons (T-complex protein 1-α, stress-induced-phosphoprotein 1), signaling protein MAP kinase kinase 1, synaptosomal proteins (synaptotagmin I, α-synuclein), NAD-dependent deacetylase sirtuin-2 and 26S protease regulatory subunit 7 protein, neuronal-specific septin 3 were altered in MTLE. Taken together, the findings may represent or lead to cytoskeletal impairment; aberrant antioxidant proteins, chaperons, MAP kinase kinase 1 and NAD-dependent deacetylase sirtuin-2 may have been involved in pathogenetic mechanisms and altered synaptosomal protein expression possibly reflects synaptic impairment in MTLE. J. W. Yang and T. Czech have equally contributed to the paper.  相似文献   
5.

Introduction

Mitochondria have an essential role in neuronal excitability and neuronal survival. In addition to energy production, mitochondria also play a crucial role in the maintenance of intracellular calcium homeostasis, generation of reactive oxygen species and mechanisms of cell death. There is a relative paucity of data about the role of mitochondria in epilepsy. Mitochondrial genome analysis is rarely carried out in the investigation of some diseases. In mesial temporal lobe epilepsies (MTLE) cases, genome analysis has never been used previously. The aim of this study is to show mitochondrial dysfunctions using genome analysis in patients with MTLE-hippocampal sclerosis (HS).

Methods

44 patients with MTLE-HS and 86 matched healthy unrelated controls were included in this study. The patients were divided into four groups according to their clinical presentation as the following: Group 1 consists of patients with intractable epilepsy who refused operation; Group 2 of operated seizure free patients; Group 3 of operated patients with seizures; and Group 4 unoperated seizure free patients with or without antiepileptic drugs. Blood samples were used to isolate DNA. Parallel tagged sequencing was employed to allow pyrosequencing of 130 samples. Complete mtDNA is amplified in two overlapping fragments (11 and 9 kb). The PCR amplicons were pooled in equimolar ratios. Titanium kits were used to produce shotgun libraries according to the manufacturer's protocol.

Results

The average coverage in total was 130 ± 30 and an average of 2365127 bases and 337 bp fragment length was received from all samples. The mean mtDNA heteroplasmy in patients was 26.35 ± 12.3 and in controls 25.03 ± 9.34. Three mutations had prominently high significance in patient samples. The most significantly associated variation was located in the MT-ATP-8 gene (8502 A > T, Asn46Ile) whereas the other two were in the MT-ND4 (11994 C > T, Thr412Ile) and MT-ND5 (13231 A > C, Lys299Gln) genes.

Conclusions

We have observed that three mutations were significantly related to the presence of epilepsy. These mutations were found at the 8502, 11994, and 13231 bp of mtDNA, which resulted in amino acid changes at the MT-ATP-8, MT-ND4 and MT-ND5 genes. Finding mutations can lead us to knowing more about the pathophysiology of the MTLE disease.  相似文献   
6.
目的:探讨脑源性神经生长因子(BDNF)对海马mi R-132的表达及齿状回颗粒细胞抑制性突触后电流(sIPSCs)的影响,明确BDNF对颞叶内侧癫痫(MTLE)发病机制的作用。方法:选取哈医大一院神经外科2008年4月-2010年10月手术治疗的MTLE患者12例海马组织。RT-pcr技术检测BDNF孵育后mir-132表达,脑片膜片钳技术检测BDNF对sIPSCs的影响。结果:BDNF升高了颞叶癫痫海马mi RNA-132的表达(P0.01),减弱了颗粒细胞sIPSCs的频率和幅度(P0.01)。结论:BDNF升高了海马mir-132的表达,减弱颗粒细胞sIPSCs的频率和幅度,可能对MTLE的发展有促进作用。  相似文献   
7.

Introduction

Hippocampal sclerosis is the most common lesion in patients with mesial temporal lobe epilepsy. Recently, there has been growing evidence on the involvement of mitochondria also in sporadic forms of epilepsy. In addition, it has been increasingly argued that mitochondrial dysfunction has an important role in epileptogenesis and seizure generation in temporal lobe epilepsy. Although mtDNA polymorphisms have been identified as potential risk factors for neurological diseases, the link between homoplasmy and heteroplasmy within tissues is not clear. We investigated whether mitochondrial DNA (mtDNA) polymorphisms are involved in a case report of a patient with mesial temporal lobe epilepsy-hippocampal sclerosis (MTLE-HS).

Design

We report the whole genome mtDNA deep sequencing results and clinical features of a 36-year-old woman with MTLE-HS. We used pyrosequencing technology to sequence a whole mitochondrial genome isolated from six different regions of her brain and blood. To assess the possible role of mitochondrial DNA variations in affected tissues, we compared all specimens from different regions of the hippocampus and blood.

Results

In total, 35 homoplasmic and 18 heteroplasmic variations have been detected in 6 different regions of the hippocampus and in blood samples. While the samples did not display any difference in homoplasmic variations, it has been shown that hippocampus regions contain more heteroplasmic variations than blood. The number of heteroplasmic variations was highest in the CA2 region of the brain and accumulated in ND2, ND4 and ND5 genes. Also, dentate and subiculum regions of the hippocampus had similar heteroplasmic variation profiles.

Discussion

We present a new rare example of parallel mutation at 16223 position. Our case suggests that defects in mitochondrial function might be underlying the pathogenesis of seizures in temporal lobe epilepsy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号