首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87篇
  免费   10篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   4篇
  2015年   6篇
  2014年   17篇
  2013年   9篇
  2012年   16篇
  2011年   9篇
  2010年   13篇
  2009年   5篇
  2008年   3篇
  2007年   2篇
  2005年   1篇
  1998年   1篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
1.
Accurate cancer biomarkers are needed for early detection, disease classification, prediction of therapeutic response and monitoring treatment. While there appears to be no shortage of candidate biomarker proteins, a major bottleneck in the biomarker pipeline continues to be their verification by enzyme linked immunosorbent assays. Multiple reaction monitoring (MRM), also known as selected reaction monitoring, is a targeted mass spectrometry approach to protein quantitation and is emerging to bridge the gap between biomarker discovery and clinical validation. Highly multiplexed MRM assays are readily configured and enable simultaneous verification of large numbers of candidates facilitating the development of biomarker panels which can increase specificity. This review focuses on recent applications of MRM to the analysis of plasma and serum from cancer patients for biomarker verification. The current status of this approach is discussed along with future directions for targeted mass spectrometry in clinical biomarker validation.  相似文献   
2.
So far, mass spectrometry-based targeted proteomics is the most sensitive approach to answer and address specific biological questions in an accurate and quantitative fashion. However, the data analysis design used for such quantification varies in the field leading to discrepancies in the reported values. In this study, different quantification strategies based on calibration curves were evaluated and compared. The best accuracy and coefficient of variation was achieved by ratio to ratio calibration curves. We applied the ratio to ratio quantification approach to analyze very low abundant insulin signaling proteins such as PIK3RA (0.10–0.93 fmol/μg), AKT1 (0.1–0.39 fmol/μg), and the insulin receptor (0.22–2.62 fmol/μg) in a fat cell model and demonstrated the adaptation of this pathway at different states of insulin sensitivity.  相似文献   
3.
Magnetic resonance imaging (MRI) has already been successively used to investigate polysaccharide matrices. In particular, MRI at microscopic resolution (MR microscopy) is now one of the most powerful techniques for studying the physical properties of natural hydrogels. To contribute to a better understanding of the correlation between chemical and physical properties of agar gels, we report here the measurement of the water magnetic parameters for agar gels extracted from different species of Gelidium: T1 and T2 relaxation times, magnetisation transfer (Ms /M0) and diffusion (D) were measured to evaluate their use for studying the gel characteristics. MR microscopic images were acquired at 7.05 Tesla using various pulse sequences. The results obtained confirmed the possibility to use quantitative MRI for the characterisation of physical parameters correlated with the type of agar chemical structure. In particular, T2 data obtained for gels at different concentrations indicate that this magnetic parameter is very sensitive to the agar concentration and hence particularly useful for the gel strength determination. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
4.
Infection by dengue flavivirus is transmitted by mosquitoes and affects tens to hundreds of millions people around the world each year. Four serotypes have been described, all of which cause similar disease. Currently, there no approved vaccines or specific therapeutics for dengue, although several vaccine prototypes are in different stages of clinical development. Among them, a chimeric vaccine, built from the replication machinery of the yellow fever 17D virus, has shown promising results in phase III trials. Accurate quantitation of expressed viral particles in alive attenuated viral antigen vaccine is essential and determination of infectious titer is usually the method of choice. The current paper describes an alternative or orthogonal strategy, namely, a multiplexed and absolute assay of four proteins of the chimera yellow fever/dengue serotype 4 virus using targeted MS in SRM mode. Over 1 month, variability of the assay using a partially purified Vero cell extract was between 8 and 17%, and accuracy was between 80 and 120%. In addition, the assay was linear between 6.25 and 200 nmol/L and could therefore be used in the near future to quantify dengue virus type 4 during production and purification from Vero cells.  相似文献   
5.
Introduction – Isodon nervosa is a commonly used traditional Chinese medicine including diterpenoids, phenolic acids, triterpenoids and volatile oil. Qualitative and quantitative analysis of multi‐components is important for its quality control. Objective – To establish a liquid chromatography–electrospray ionisation–mass spectrometry method for simultaneous analysis of 20 bioactive constituents of Isodon nervosa in different places of China and different parts of this herb. Methodology – The optimal chromatographic conditions were achieved on a C18 column (250 × 4.6 mm, 5 µm) with with linear gradient elution with 0.1% aqueous formic acid : methanol containing 0.1% formic acid at a flow‐rate of 0.7 mL/min in 15 min. The identification and quantification of those analytes were achieved on a hybrid quadrupole linear ion trap mass spectrometer. Multiple‐reaction monitoring scanning was employed for quantification with switching electrospray ion source polarity between positive and negative modes in a single run. Full validation of the method was carried out (linearity, precision, accuracy, limit of detection and limit of quantification). Results – The results indicated that the method was simple, rapid, specific and reliable. The proposed method was successfully applied for the qualitative and quantitative analysis of 20 chemical compositions in Isodon nervosa samples. Conclusion – Twenty chemical compositions in 21 batches of wild and cultivated Isodon nervosa samples from different sources had great variation in the contents. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
A new one-step liquid chromatography–electrospray tandem MS/MS method is described to quantify ezetimibe (EZM) a novel lipid lowering drug in human serum. Also using collision-induced dissociation (CID) of the analyte, identification and chromatographic separation of its major metabolite, ezetimibe glucuronide (EZM-G) is achieved in this study. A thawed serum aliquot of 100 μL was deproteinated by addition of 500 μL methanol containing omeprazole as internal standard (I.S.). Separation of the drug, its metabolite and the I.S. were achieved using acetonitrile–water (70:30, v/v) as mobile phase at flow rate of 0.5 mL/min on a MZ PerfectSil target C18 column. Multiple reaction monitoring (MRM) mode of precursor–product ion transition (408.7 → 272.0 for EZM and 345 → 194.5 for the I.S.) was applied for detection and quantification of the drug while, EZM-G was chromatographically separated and identified using CID. The analytical method was linear over the concentration range of 1–32 ng/mL of EZM in human serum with a limit of quantification of 1 ng/mL. The coefficient variation values of both inter- and intra-day analysis were less than 8% whereas the percentage error was less than 3.7. The validated method was applied in a randomized cross-over bioequivalence study of two different EZM preparations in 24 healthy volunteers.  相似文献   
7.
8.
The regulation of mitochondrial function is essential for cardiomyocyte adaptation to cellular stress. While it has long been understood that phosphorylation regulates flux through metabolic pathways, novel phosphorylation sites are continually being discovered in all functionally distinct areas of the mitochondrial proteome. Extracting biologically meaningful information from these phosphorylation sites requires an adaptable, sensitive, specific and robust method for their quantification. Here we report a multiple reaction monitoring-based mass spectrometric workflow for quantifying site-specific phosphorylation of mitochondrial proteins. Specifically, chromatographic and mass spectrometric conditions for 68 transitions derived from 23 murine and human phosphopeptides, and their corresponding unmodified peptides, were optimized. These methods enabled the quantification of endogenous phosphopeptides from the outer mitochondrial membrane protein VDAC, and the inner membrane proteins ANT and ETC complexes I, III and V. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of mitochondrial protein phosphorylation in cardiac physiology and pathophysiology. This article is part of a Special Issue entitled: Translational Proteomics.  相似文献   
9.
The proteomic response to bacterial infection in a teleost fish (Paralichthys olivaceus) infected with Streptococcus parauberis was analyzed using label-free protein quantitation coupled with LC-MS(E) tandem mass spectrometry. A total of 82 proteins from whole kidney, a major lymphoid organ in this fish, were found to be differentially expressed between healthy and diseased fish analyzed 6, 24, 72 and 120 h post-infection. Among the differentially expressed proteins, those involved in mediating immune responses (e.g., heat shock proteins, cathepsins, goose-type lysozyme and complement components) were most significantly up-regulated by infection. In addition, cell division cycle 48 (CDC48) and calreticulin, which are associated with cellular recovery and glycoprotein synthesis, were up-regulated in the universal protein group, whereas the other proteins in that group were down-regulated. There was continuous activation of expression of immune-associated proteins during infection, but there was also loss of expression of proteins not involved in immune function. We expect that our findings regarding immune response at the protein level would offer new insight into the systemic response to bacterial infection of a major immune organ in teleost fish.  相似文献   
10.
Ahn YH  Shin PM  Oh NR  Park GW  Kim H  Yoo JS 《Journal of Proteomics》2012,75(17):5507-5515
Aberrantly glycosylated proteins related to liver cancer progression were captured with specific lectin and identified from human plasma by multiple reaction monitoring (MRM) mass spectrometry as multiple biomarkers for hepatocellular carcinoma (HCC). The lectin fractionation for fucosylated protein glycoforms in human plasma was conducted with a fucose-specific aleuria aurantia lectin (AAL). Following tryptic digestion of the lectin-captured fraction, plasma samples from 30 control cases (including 10 healthy, 10 hepatitis B virus [HBV], and 10 cirrhosis cases) and 10 HCC cases were quantitatively analyzed by MRM to identify which glycoproteins are viable HCC biomarkers. A1AG1, AACT, A1AT, and CERU were found to be potent biomarkers to differentiate HCC plasma from control plasmas. The AUROC generated independently from these four biomarker candidates ranged from 0.73 to 0.92. However, the lectin-coupled MRM assay with multiple combinations of biomarker candidates is superior statistically to those generated from the individual candidates with AUROC more than 0.95, which can be an alternative to the immunoassay inevitably requiring tedious development of multiple antibodies against biomarker candidates to be verified. Eventually the lectin-coupled, targeted proteomic mass spectrometry (MRM MS) platform was found to be efficient to identify multiple biomarkers from human plasma according to cancer progression.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号