首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54篇
  免费   1篇
  国内免费   1篇
  2021年   1篇
  2020年   6篇
  2019年   10篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   2篇
  2014年   1篇
  2013年   11篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
1.
Abstract

In the current contribution, a multicomplex-based pharmacophore modeling approach was employed on the structural proteome of Plasmodium falciparum orotidine-5-monophosphate decarboxylase enzyme (PfOMPDC). Among the constructed pharmacophore models, the representative hypotheses were selected as the primary filter to screen the molecules with the complementary features responsible for showing inhibition. Thereafter, auxiliary evaluations were performed on the screened candidates via drug-likeness and molecular docking studies. Subsequently, the stability of the docked protein-ligand complexes was scrutinized by employing molecular dynamics simulations and molecular mechanics-Poisson Boltzmann surface area based free binding energy calculations. The stability the docked candidates was compared with the highly active crystallized inhibitor (3S9Y-FNU) to seek more potential candidates. All the docked molecules displayed stable dynamic behavior and high binding free energy in comparison to 3S9Y-FNU. The employed workflow resulted in the retrieval of five drug-like candidates with diverse scaffolds that may show inhibitory activity against PfOMPDC and could be further used as the novel scaffold to develop novel antimalarials.

Communicated by Ramaswamy H. Sarma  相似文献   
2.
The pyrrolotriazin derivative 2-(4-(4-((7-(3-(N-methylmethylsulfonamido)phenyl)pyrrolo [2,1-f][1,2,4]triazin-2-yl)amino)phenyl)piperidin-1-yl)acetamide (PPA) is a potential Janus kinase 2 (JAK2) inhibitor. The binding mode between PPA and JAK2 was investigated by using a combined method of docking, molecular dynamics (MD) simulation and binding free-energy calculation. The docking calculations preliminarily indicated that there were two possible binding modes 1 and 2; MD simulations and binding free-energy calculations identified that binding mode 1 was more stable and favourable, with the lower MM-PBSA binding free energy of ?34.00?±?0.17?kcal/mol. Moreover, some valuable binding information is revealed as follows: the inhibitor PPA is suitably located at the ATP-binding site of JAK2 and the hydrophobic interaction plays an essential role. PPA not only interacts with residues Leu855, Val863, Ala880, Tyr931, Leu932 and Leu983 via hydrophobic interaction but also interacts with Ser936 and Asp994 by hydrogen bonds. These two factors are advantageous for PPA to strongly bind to JAK2. These results help to understand the action mechanisms and designing new compounds with a higher affinity to JAK2.  相似文献   
3.
In the present contribution, multicomplex-based pharmacophore studies were carried out on the structural proteome of Plasmodium falciparum 1-deoxy-D -xylulose-5-phosphate reductoisomerase. Among the constructed models, a representative model with complementary features, accountable for the inhibition was used as a primary filter for the screening of database molecules. Auxiliary evaluations of the screened molecules were performed via drug-likeness and molecular docking studies. Subsequently, the stability of the docked inhibitors was envisioned by molecular dynamics simulations, principle component analysis, and molecular mechanics-Poisson-Boltzmann surface area-based free binding energy calculations. The stability assessment of the hits was done by comparing with the reference (beta-substituted fosmidomycin analog, LC5) to prioritize more potent candidates. All the complexes showed stable dynamic behavior while three of them displayed higher binding free energy compared with the reference. The work resulted in the identification of the compounds with diverse scaffolds, which could be used as initial leads for the design of novel PfDXR inhibitors.  相似文献   
4.
A pair of stereoisomeric covalent adducts to guanine in double-stranded DNA, derived from the reaction of mutagenic and tumorigenic metabolites of benzo[a]pyrene, have been well characterized structurally and thermodynamically. Both high-resolution NMR solution structures and an array of thermodynamic data are available for these 10S (+)- and 10R (-)-trans-anti -[BP]-N(2)-dG adducts in double-stranded deoxyoligonucleotides. The availability of experimentally well-characterized duplexes containing these two stereoisomeric guanine adducts provides an opportunity for evaluating the molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method for computing thermodynamic properties from molecular dynamics ensembles. We have carried out 3-ns molecular dynamics simulations, using NMR solution structures as the starting models for the 10S (+)- and 10R (-)-trans-anti-dG adducts in a DNA duplex 11-mer using AMBER 6.0. We employed the MM-PBSA method to compute the free energies, enthalpies, and entropies of the two adducts. Our complete thermodynamic analysis agrees quite well with the full experimental thermodynamic characterization of these adducts, showing essentially equal stabilities of the two adducts. We also calculated the nuclear Overhauser effect (NOE) distances from the molecular dynamics trajectories, and compared them against the experimental NMR-derived NOE distances. Our results showed that the simulated structures are in good agreement with the NMR experimental NOE data. Furthermore, the molecular dynamics simulations provided new structural and biological insights. Specifically, the puzzling observation that the BP aromatic ring system in the 10S (+)-trans-anti-dG adduct is more exposed to the aqueous solvent than the 10R (-)-trans-anti-dG adduct, is rationalized in terms of the adduct structures. The structural and thermodynamic features of these stereoisomeric adducts are also discussed in relation to their reported low susceptibilities to nucleotide excision repair.  相似文献   
5.
The objective of the present study was to evaluate the effects of propolis, pollen, and caffeic acid phenethyl ester (CAPE) on tyrosine hydroxylase (TH) activity and total RNA levels of Nω-nitro-L-arginine methyl ester (L-NAME) inhibition of nitric oxide synthase in the heart, adrenal medulla, and hypothalamus of hypertensive male Sprague dawley rats. The TH activity in the adrenal medulla, heart, and hypothalamus of the rats was significantly increased in the L-NAME group vs. control (p < 0.05). Treatment with L-NAME led to a significant increase in blood pressure (BP) in the L-NAME group compared to control (p < 0.05). These data suggest that propolis, pollen, and CAPE may mediate diminished TH activity in the heart, adrenal medulla, and hypothalamus in hypertensive rats. The decreased TH activity may be due to the modulation and synthesis of catecholamines and BP effects. In addition, the binding mechanism of CAPE within the catalytic domain of TH was investigated by means of molecular modeling approaches. These data suggest that the amino acid residues, Glu429 and Ser354 of TH may play a pivotal role in the stabilization of CAPE within the active site as evaluated by molecular dynamics (MD) simulations. Gibbs binding free energy (ΔGbinding) of CAPE in complex with TH was also determined by post-processing MD analysis approaches (i.e. Poisson-Boltzmann Surface Area (MM-PBSA) method).  相似文献   
6.
In the present study, the changes that occur in rat liver tissue as a result of the use of grape seed extract (GSE) and low level laser therapy (LLLT) in intraoral wound (IW) healing are analyzed using biochemical parameters. Diode laser application groups received 8 J/cm2 dose LLLT once a day for 4 days (810 nm wavelength, continuous mode, 0.25 W, 9 s). As a result of the biological parameter analysis, it was determined that the oxidative damage caused by the IWs and recovery period on 7th and 14th days could be substantially removed with GSE applications that have antioxidant capacity especially in rat liver tissue. In addition, the active compound of grape seed, catechin is studied in the active site of glycogen synthase kinase 3 (GSK3) target using molecular modeling approaches. Post-processing molecular dynamics (MD) results for catechin is compared with a standard GSK3 inhibitor. MD simulations assisted for better understanding of inhibition mechanism and the crucial amino acids contributing in the ligand binding. These results along with a through free energy analysis of ligands using sophisticated simulations methods are quite striking and it suggests a greater future role for simulation in deciphering complex patterns of molecular mechanism in combination with methods for understanding drug-receptor interactions.  相似文献   
7.
In the current work, conformational changes of bromodomain-containing protein 4 (1) (BRD4-1) induced by bindings of inhibitors XD29 (57G), XD35 (57F), and XD28 (L28) were investigated using molecular dynamics (MD) simulations and principal component analysis. The results demonstrate that inhibitor bindings produce significant effect on the motion of ZA loop in BRD4-1. Moreover, to further study binding modes of three inhibitors to BRD4-1, binding free energies of inhibitors to BRD4-1 were also calculated using molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method. The results indicate that van der Waals interactions are main factors to modulate inhibitor bindings. Energy decomposition and hydrogen bond analysis demonstrate that residues Pro82, Leu92, Asn140, and Ile146 play important roles in binding processes of inhibitors to BRD4-1. This study is not only helpful for better understanding function and internal dynamics of BRD4-1, but also can provide a theoretical basis for rational designs of effective anticancer drugs targeting BRD4-1.  相似文献   
8.
A series of cationic porphyrin–anthraquinone hybrids bearing either pyridine, imidazole, or pyrazole rings at the meso-positions have been investigated for their interaction with DNA G-quadruplexes by employing molecular docking and molecular dynamics simulations. Three types of DNA G-quadruplexes were utilized, which comprise parallel, antiparallel, and mixed hybrid topologies. The porphyrin hybrids have a preference to bind with parallel and mixed hybrid structures compared to the antiparallel structure. This preference arises from the end stacking of porphyrin moiety following G-stem and loop binding of anthraquinone tail, which is not found in the antiparallel due to the presence of diagonal and lateral loops that crowd the G-quartet. The binding to the antiparallel, instead, occurred with poorer affinity through both the loop and wide groove. All sites of porphyrin binding were confirmed by 6 ns molecular dynamics simulation, as well as by the negative value of the total binding free energies that were calculated using the MMPBSA method. Free energy analysis shows that the favorable contribution came from the electrostatic term, which supposedly originated from the interaction of either cationic pyridinium, pyrazole, or imidazole groups and the anionic phosphate backbone, and also from the van der Waals energy, which primarily contributed through end stacking interaction.  相似文献   
9.
The binding of ten quinoxaline compounds (110) to a site adjacent to S2 (AS2) of cruzain (CRZ) was evaluated by a protocol that include a first analysis through docking experiments followed by a second analysis using the Molecular Mechanics-Poisson-Boltzmann Surface Area method (MM-PBSA). Through them we demonstrated that quinoxaline compounds bearing substituents of different sizes at positions 3 or 4 of the heterocyclic ring might interact with the AS2, particularly interesting site for drug design. These compounds showed docking scores (ΔGdock) which were similar to those estimated for inhibitors that bind to the enzyme through non-covalent interactions. Nevertheless, the free binding energies (ΔG) values estimated by MM-PBSA indicated that the derivatives 810, which bear bulky substituents at position 3 of the heterocycle ring, became detached from the binding site under a dynamic study. Surprisingly, the evaluation of the inhibitory activity of cruzipain (CZ) of some derivatives showed that they increase the enzymatic activity. These results lead us to conclude about the relevance of AS2 as a pocket for compounds binding site, but not necessarily for the design of anti-chagasic compounds.  相似文献   
10.
Nowadays, the improvement of R&D productivity is the primary commitment in pharmaceutical research, both in big pharma and smaller biotech companies. To reduce costs, to speed up the discovery process and to increase the chance of success, advanced methods of rational drug design are very helpful, as demonstrated by several successful applications. Among these, computational methods able to predict the binding affinity of small molecules to specific biological targets are of special interest because they can accelerate the discovery of new hit compounds. Here we provide an overview of the most widely used methods in the field of binding affinity prediction, as well as of our own work in developing BEAR, an innovative methodology specifically devised to overtake some limitations in existing approaches. The BEAR method was successfully validated against different biological targets, and proved its efficacy in retrieving active compounds from virtual screening campaigns. The results obtained so far indicate that BEAR may become a leading tool in the drug discovery pipeline. We primarily discuss advantages and drawbacks of each technique and show relevant examples and applications in drug discovery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号