首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   2篇
  国内免费   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2011年   2篇
  2010年   7篇
  2009年   7篇
  2008年   5篇
  2007年   2篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   3篇
  1998年   1篇
  1997年   3篇
  1994年   1篇
  1993年   1篇
  1987年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
  1981年   3篇
排序方式: 共有66条查询结果,搜索用时 31 毫秒
1.
Since cytoplasmic Ca2+ levels are reported to regulate neurite elongation, we tested whether calcium-activated kinases might be necessary for growth cone motility and neurite elongation in explant cultures of goldfish retina. Kinase inhibitors and activators were locally applied by micropipette to retinal growth cones and the responses were observed via phase-contrast videomicroscopy. In some cases, growth rates were also quantifed over several hours after general application in the medium. The selective inhibitors of protein kinase C, calphostin C (0.1–1 μM) and chelerythrin (up to 50 μM), caused no obvious changes in growth cones or neurite elongation, and activators of PKC (phorbols, arachidonic acid, and diacylglycerol) also were generally without effects, although phorbols slowed the growth rate. Inhibitors of protein kinase A and tyrosine kinases also produced no obvious effects. The calmodulin antagonists, calmidazolium (0.1 μM), trifluoperazine (100 μM), and CGS9343B (50 μM), however, caused a reversible growth cone arrest with loss of filopodia and lamellipodia. The growth cone became a club-shaped swelling which sometimes moved a short distance back the shaft, leaving evacuated filaments at points of strong filopodial attachments. A similar reversible growth cone arrest occurred with the general kinase inhibitors: H7 at 200 but not at 100 μM, and staurosporine at 100 but not 10 nM, suggesting possible involvement of a calmodulin-dependent kinase (camK) rather than PKC. The selective inhibitor of camKII, KN-62 (tested up to 50 μM), produced no effects but the specific myosin light-chain kinase (MLCK) inhibitors ML-7 (3–5 μM) and ML-9 (5–10 μM) reversibly reproduced the effect, suggesting that MLCK rather than camKII is necessary for growth cone motility. The MLCK inhibitors' effects both on growth cone morphology and on F-actin filaments (rhodamine-phalloidin staining) were similar to those caused by cytochalasin D (5 μM), and are discussed in light of findings that inhibiting MLCK disrupts actin filaments in astrocytes and fibroblasts. 1994 John Wiley & Sons, Inc.  相似文献   
2.
Partially purified smooth muscle (chicken gizzard) actomyosin contains two major substrates of cAMP-dependent protein kinase: a protein of Mr = 130,000, identified as the calmodulin-dependent myosin light chain kinase, and a protein of Mr = 42,000. This latter protein was shown by a variety of electrophoretic procedures to be actin. Purified smooth muscle actin also was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. The rate of phosphorylation of smooth muscle actin was significantly enhanced by depolyjerization of actin. A maximum of 2.0 mol phosphate could be incorporated per mol G-actin. Skeletal muscle F-actin was not significantly phosphorylated by protein kinase; however, skeletal G-actin is a substrate for the protein kinase although its rate of phosphorylation was significantly slower than that of smooth muscle G-actin.  相似文献   
3.
4.
Fajmut A  Brumen M  Schuster S 《FEBS letters》2005,579(20):4361-4366
Active Ca2+/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays an important role in the process of MLC phosphorylation and consecutive smooth muscle contraction. Here, we propose a mathematical model of a detailed kinetic scheme describing interactions among Ca2+, CaM and MLCK and taking into account eight different aggregates. The main model result is the prediction of the Ca2+ dependent active form of MLCK, which is in the model taken as proportional to the concentration of Ca4CaM · MLCK complex. Wegscheider’s condition is additionally applied as a constraint enabling the prediction of some parameter values that have not yet been obtained by experiments.  相似文献   
5.
Type I collagen, synthesized in all tissues as the heterotrimer of two α1(I) polypeptides and one α2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5′ stem-loop in collagen α1(I) and α2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen α1(I) homotrimer, diminished intracellular colocalization of collagen α1(I) and α2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen α1(I) and α2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.  相似文献   
6.
Cell migration is regulated by the action of many signaling pathways that are activated in specific regions of migrating cells. Extracellular regulated kinase 1/2 (ERK) signaling can modulate the migration of cells by controlling the turnover of focal adhesions and the dynamics of actin polymerization. Focal adhesion turnover is necessary for cell migration, and the formation of strong actin stress fibers and mature focal adhesions puts the brakes on cell migration. We used F9 wild-type and vinculin null (vin-/-) parietal endoderm (PE) outgrowth to study the role of the ERK signaling pathway in cell migration. Upon plating of F9 embryoid bodies (EBs) onto laminin-coated dishes, PE cells migrate away from the EBs, providing an in vitro model for studying directed migration of this embryonic cell type. Our results suggest that the ERK pathway regulates PE cell migration by affecting the formation of focal adhesions and lamellipodia through the action of myosin light chain kinase (MLCK).  相似文献   
7.
Muscle contraction involves the interaction of the myosin heads of the thick filaments with actin subunits of the thin filaments. Relaxation occurs when this interaction is blocked by molecular switches on these filaments. In many muscles, myosin-linked regulation involves phosphorylation of the myosin regulatory light chains (RLCs). Electron microscopy of vertebrate smooth muscle myosin molecules (regulated by phosphorylation) has provided insight into the relaxed structure, revealing that myosin is switched off by intramolecular interactions between its two heads, the free head and the blocked head. Three-dimensional reconstruction of frozen-hydrated specimens revealed that this asymmetric head interaction is also present in native thick filaments of tarantula striated muscle. Our goal in this study was to elucidate the structural features of the tarantula filament involved in phosphorylation-based regulation. A new reconstruction revealed intra- and intermolecular myosin interactions in addition to those seen previously. To help interpret the interactions, we sequenced the tarantula RLC and fitted an atomic model of the myosin head that included the predicted RLC atomic structure and an S2 (subfragment 2) crystal structure to the reconstruction. The fitting suggests one intramolecular interaction, between the cardiomyopathy loop of the free head and its own S2, and two intermolecular interactions, between the cardiac loop of the free head and the essential light chain of the blocked head and between the Leu305-Gln327 interaction loop of the free head and the N-terminal fragment of the RLC of the blocked head. These interactions, added to those previously described, would help switch off the thick filament. Molecular dynamics simulations suggest how phosphorylation could increase the helical content of the RLC N-terminus, weakening these interactions, thus releasing both heads and activating the thick filament.  相似文献   
8.
9.
Fibronectin (FN) fibrillogenesis is an essential biological process mediated by α5β1 integrin and cellular contractile forces. Assembly of a FN matrix by activated endothelial cells occurs during angiogenic blood vessel remodeling and signaling components that control this event represent attractive therapeutic targets. Here we examined the role of individual Rho GTPases in FN matrix remodeling by selectively attenuating their expression in cultured endothelial cells. Whereas pharmacological ablation of myosin-regulated contractility abrogated matrix assembly, no significant decrease was detected in the amount of FN deposited by RhoA, RhoB-, RhoC-, Rac1-, or Cdc42-depleted cells. Rather, distinct differences in fiber arrangement were observed. Most strikingly, RhoA silenced cells assembled a fine FN meshwork beneath α5β1 integrin-based fibrillar adhesions, in the absence of classical focal adhesions and actin stress fibers, indicating that α5β1 integrin translocation and FN fibril elongation can occur in low tension states such as those encountered by newly-forming vessels in tissue. In contrast, highly contractile Cdc42-deficient cells deposited FN globules and Rac-deficient cells assembled long arrays, reflecting their increased motility. We propose that regulation of FN scaffolds by Rho GTPase signaling impacts bidirectional communications and mechanical interactions between endothelial cells and their extracellular matrix during vascular morphogenesis.  相似文献   
10.
目的观察正常大鼠胃组织中肌球蛋白轻链激酶的表达及分布特点。方法取11只SD正常雄性大鼠,在饥饿状态下,处死后取胃组织。通过免疫组化染色,观察正常大鼠胃组织中MLCK的表达及分布。结果MLCK在黏膜肌层、肌层和黏膜下层血管壁平滑肌均有大量表达;在胃底腺中,MLCK主要表达于壁细胞和主细胞胞浆内。结论MLCK不仅存在于平滑肌细胞内,还分布于胃底腺壁细胞和主细胞内,可能参与胃底腺腺细胞的分泌活动。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号