首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2018年   9篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   7篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   4篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1984年   3篇
  1983年   1篇
  1981年   1篇
  1977年   2篇
  1974年   1篇
排序方式: 共有89条查询结果,搜索用时 31 毫秒
1.
PurposeAt introduction in 2014, dose calculation for the first MLC on a robotic SRS/SBRT platform was limited to a correction-based Finite-Size Pencil Beam (FSPB) algorithm. We report on the dosimetric accuracy of a novel Monte Carlo (MC) dose calculation algorithm for this MLC, included in the Precision™ treatment planning system.MethodsA phantom was built of one slab (5.0 cm) of lung-equivalent material (0.09…0.29 g/cc) enclosed by 3.5 cm (above) and 5 cm (below) slabs of solid water (1.045 g/cc). This was irradiated using rectangular (15.4 × 15.4 mm2 to 53.8 × 53.7 mm2) and two irregular MLC-fields. Radiochromic film (EBT3) was positioned perpendicular to the slabs and parallel to the beam. Calculated dose distributions were compared to film measurements using line scans and 2D gamma analysis.ResultsMeasured and MC calculated percent depth dose curves showed a characteristic dose drop within the low-density region, which was not correctly reproduced by FSPB. Superior average gamma pass rates (2%/1 mm) were found for MC (91.2 ± 1.5%) compared to FSPB (55.4 ± 2.7%). However, MC calculations exhibited localized anomalies at mass density transitions around 0.15 g/cc, which were traced to a simplification in electron transport. Absence of these anomalies was confirmed in a modified build of the MC engine, which increased gamma pass rates to 96.6 ± 1.2%.ConclusionsThe novel MC algorithm greatly improves dosimetric accuracy in heterogeneous tissue, potentially expanding the clinical use of robotic radiosurgery with MLC. In-depth, independent validation is paramount to identify and reduce the residual uncertainties in any software solution.  相似文献   
2.
CS7BL/6 mice were sensitized with an ip injection of allogeneic P-815 mastocytoma cells. Fifteen days later the spleen cells of the tumor allosensitized mice were cultured and tested for their responsiveness to mitogens and alloantigens, and for their ability to generate cytotoxic cells in vitro. The results indicate that 15 day tumor-sensitized spleen cells are hypo-responsive in mixed lymphocyte culture (MLC) with DBA/2 or AKR as stimulating spleen cells. The cells which are hypo-responsive in MLC can proliferate in response to mitogens and they also can generate cytotoxic cells in vitro. MLC reactivity recovers in about 2–3 months which is 112–212 months after the mice have rejected their tumors. The mechanism of MLC hypo-responsiveness was investigated. The results suggest the presence of a suppressor cell which does not appear to be a macrophage or a B-cell. The suppressor cell can be separated from the cytotoxic cell and therefore appears to be a noncytotoxic T-cell.  相似文献   
3.
In unidirectional mixed lymphocyte cultures containing (as responders, stimulators, or regulators) spleen cells from mice infected with Trypanosoma cruzi, alloantigen responses were less than in cultures containing normal spleen cells only. Depletion of plastic adherent cells from infected spleen cells (stimulators or regulators) reversed their inhibitory effect on normal spleen cells (responders); removal of adherent responder cells and/or B lymphocytes did not alter the low alloantigen responses of normal spleen cells (stimulated by infected spleen cells) or infected spleen cells (stimulated by normal spleen cells). Infected spleen cells were effective in regulating mixed lymphocyte cultures only when added at the initiation of the culture. Serum from infected mice suppressed mixed lymphocyte cultures containing responder spleen cells syngeneic to the serum donor if added up to 24 hr after initiation of cultures, whereas the “suppressor serum” had to be present at the initiation of cultures when responder cells were allogeneic to the serum donor. Cultures of infected spleen cells (whole or macrophage enriched) produced a factor which was suppressive when added to mixed lymphocyte cultures containing syngeneic responder cells at initiation. It is proposed that the serum suppressor substance regulates cell-mediated immune responses directly by suppressing the response-potential of cells and indirectly by triggering the release of a factor from adherent splenic cells which induces a hyporesponsive state in T lymphocytes.  相似文献   
4.
L Liu  G Li  Q Li  Z Jin  L Zhang  J Zhou  X Hu  T Zhou  J Chen  N Gao 《Cell death & disease》2013,4(12):e941
The diterpene triepoxide triptolide is a major active component of Tripterygium wilfordii Hook F, a popular Chinese herbal medicine with the potential to treat hematologic malignancies. In this study, we investigated the roles of triptolide in apoptosis and cell signaling events in human leukemia cell lines and primary human leukemia blasts. Triptolide selectively induced caspase-dependent cell death that was accompanied by the loss of mitochondrial membrane potential, cytochrome c release, and Bax translocation from the cytosol to the mitochondria. Furthermore, we found that triptolide dramatically induced ROCK1 cleavage/activation and MLC and MYPT phosphorylation. ROCK1 was cleaved and activated by caspase-3, rather than RhoA. Inhibiting MLC phosphorylation by ML-7 significantly attenuated triptolide-mediated apoptosis, caspase activation, and cytochrome c release. In addition, ROCK1 inhibition also abrogated MLC and MYPT phosphorylation. Our in vivo study showed that both ROCK1 activation and MLC phosphorylation were associated with the tumor growth inhibition caused by triptolide in mouse leukemia xenograft models. Collectively, these findings suggest that triptolide-mediated ROCK1 activation and MLC phosphorylation may be a novel therapeutic strategy for treating hematological malignancies.  相似文献   
5.
Alexander disease (AxD) is a rare and fatal neurodegenerative disorder caused by mutations in the gene encoding glial fibrillary acidic protein (GFAP). In this report, a mouse model of AxD (GFAPTg;Gfap+/R236H) was analyzed that contains a heterozygous R236H point mutation in murine Gfap as well as a transgene with a GFAP promoter to overexpress human GFAP. Using label-free quantitative proteomic comparisons of brain tissue from GFAPTg;Gfap+/R236H versus wild-type mice confirmed upregulation of the glutathione metabolism pathway and indicated proteins were elevated in the peroxisome proliferator-activated receptor (PPAR) signaling pathway, which had not been reported previously in AxD. Relative protein-level differences were confirmed by a targeted proteomics assay, including proteins related to astrocytes and oligodendrocytes. Of particular interest was the decreased level of the oligodendrocyte protein, 2-hydroxyacylsphingosine 1-beta-galactosyltransferase (Ugt8), since Ugt8-deficient mice exhibit a phenotype similar to GFAPTg;Gfap+/R236H mice (e.g., tremors, ataxia, hind-limb paralysis). In addition, decreased levels of myelin-associated proteins were found in the GFAPTg;Gfap+/R236H mice, consistent with the role of Ugt8 in myelin synthesis. Fabp7 upregulation in GFAPTg;Gfap+/R236H mice was also selected for further investigation due to its uncharacterized association to AxD, critical function in astrocyte proliferation, and functional ability to inhibit the anti-inflammatory PPAR signaling pathway in models of amyotrophic lateral sclerosis (ALS). Within Gfap+ astrocytes, Fabp7 was markedly increased in the hippocampus, a brain region subjected to extensive pathology and chronic reactive gliosis in GFAPTg;Gfap+/R236H mice. Last, to determine whether the findings in GFAPTg;Gfap+/R236H mice are present in the human condition, AxD patient and control samples were analyzed by Western blot, which indicated that Type I AxD patients have a significant fourfold upregulation of FABP7. However, immunohistochemistry analysis showed that UGT8 accumulates in AxD patient subpial brain regions where abundant amounts of Rosenthal fibers are located, which was not observed in the GFAPTg;Gfap+/R236H mice.  相似文献   
6.
Cytokinesis is the last step of the M (mitosis) phase,yet it is crucial for the faithful division of one cell into two.Cytokinesis failure is often associated with cancer.Cytokinesis can be morphologically divided into four steps:cleavage furrow initiation,cleavage furrow ingression,midbody formation and abscission.Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis.At the same time,Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis,including cytokinesis.Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks.More specifically,Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1,thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains.Ect2 itself can be phosphorylated by Plk1 in vitro.Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity.Once activated,RhoA-GTP will activate downstream effectors,including ROCK1 and ROCK2.ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen,and Plk1 can phosphorylate ROCK2 in vitro.We review current understandings of the interplay between Plk1,RhoA proteins and other proteins (e.g.,NudC,MKLP2,PRC1,CEP55) involved in cytokinesis,with partitular emphasis of its clinical implications in cancer.  相似文献   
7.
Damage to cardiac contractile proteins during ischemia followed by reperfusion is mediated by reactive oxygen species such as peroxynitrite (ONOO), resulting in impairment of cardiac systolic function. However, the pathophysiology of systolic dysfunction during ischemia only, before reperfusion, remains unclear. We suggest that increased ONOO generation during ischemia leads to nitration/nitrosylation of myosin light chain 1 (MLC1) and its increased degradation by matrix metalloproteinase-2 (MMP-2), which leads to impairment of cardiomyocyte contractility. We also postulate that inhibition of ONOO action by use of a ONOO scavenger results in improved recovery from ischemic injury. Isolated rat cardiomyocytes were subjected to 15 and 60 min. of simulated ischemia. Intact MLC1 levels, measured by 2D gel electrophoresis and immunoblot, were shown to decrease with increasing duration of ischemia, which correlated with increasing levels of nitrotyrosine and nitrite/nitrate. In vitro degradation of human recombinant MLC1 by MMP-2 increased after ONOO exposure of MLC1 in a concentration-dependent manner. Mass spectrometry analysis of ischemic rat cardiomyocyte MLC1 showed nitration of tyrosines 78 and 190, as well as of corresponding tyrosines 73 and 185 within recombinant human cardiac MLC1 treated with ONOO. Recombinant human cardiac MLC1 was additionally nitrosylated at cysteine 67 and 76 corresponding to cysteine 81 of rat MLC1. Here we show that increased ONOO production during ischemia induces MLC1 nitration/nitrosylation leading to its increased degradation by MMP-2. Inhibition of MLC1 nitration/nitrosylation during ischemia by the ONOO scavenger FeTPPS (5,10,15,20-tetrakis-[4-sulfonatophenyl]-porphyrinato-iron[III]), or inhition of MMP-2 activity with phenanthroline, provides an effective protection of cardiomyocyte contractility.  相似文献   
8.
Fajmut A  Brumen M  Schuster S 《FEBS letters》2005,579(20):4361-4366
Active Ca2+/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) plays an important role in the process of MLC phosphorylation and consecutive smooth muscle contraction. Here, we propose a mathematical model of a detailed kinetic scheme describing interactions among Ca2+, CaM and MLCK and taking into account eight different aggregates. The main model result is the prediction of the Ca2+ dependent active form of MLCK, which is in the model taken as proportional to the concentration of Ca4CaM · MLCK complex. Wegscheider’s condition is additionally applied as a constraint enabling the prediction of some parameter values that have not yet been obtained by experiments.  相似文献   
9.
The ability of inflammatory cytokine TGF-beta1 to alter endothelial cell phenotype suggests its role in the regulation of vascular endothelial cell permeability. We demonstrate that depletion of TGF-beta1 receptor ALK5 and regulatory protein Smad4, but not ALK1 receptor attenuates TGF-beta1-induced permeability increase and significantly inhibits TGF-beta1-induced EC contraction manifested by actin stress fiber formation and increased MLC and MYPT1 phosphorylation. Consistent with these results, EC treatment with SB 431542, an inhibitor of ALK5 but not ALK1 receptor, significantly attenuates TGF-beta1-induced permeability. Thus, our data demonstrate for the first time direct link between TGF-beta1-mediated activation of ALK5/Smad and EC barrier dysfunction.  相似文献   
10.
Hideaki Shimada 《FEBS letters》2010,584(13):2827-2832
Lysophosphatidic acid (LPA), an inflammatory mediator that is elevated in multiple inflammatory diseases, is a potent activator of Rho kinase (ROCK) signaling and of chemokine production in endothelial cells. In this study, LPA activated ROCK, p38, JNK and NF-κB pathways and induced interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1) mRNA and protein expression in human endothelial cells. We mapped signaling events downstream of ROCK, driving chemokine production. In summary, MCP-1 production was partly regulated by ROCK acting upstream of p38 and JNK and mediated downstream by NF-κB. IL-8 production was largely driven by ROCK through p38 and JNK activation, but with no involvement of NF-κB.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号