首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   4篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   2篇
排序方式: 共有11条查询结果,搜索用时 109 毫秒
1.
X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disease characterized by renal phosphate wasting, aberrant vitamin D metabolism, and defective bone mineralization. It is known that XLH in humans and in certain mouse models is caused by inactivating mutations in PHEX/Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). By a genome-wide N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen in mice, we identified a dominant mouse mutation that exhibits the classic clinical manifestations of XLH, including growth retardation, skeletal abnormalities (rickets/osteomalacia), hypophosphatemia, and increased serum alkaline phosphatase (ALP) levels. Mapping and sequencing revealed that these mice carry a point mutation in exon 14 of the Phex gene that introduces a stop codon at amino acid 496 of the coding sequence (Phex(Jrt) also published as Phex(K496X) [Ichikawa et al., 2012]). Fgf23 mRNA expression as well as that of osteocalcin, bone sialoprotein, and matrix extracellular phosphoglycoprotein was upregulated in male mutant long bone, but that of sclerostin was unaffected. Although Phex mRNA is expressed in bone from mutant hemizygous male mice (Phex(Jrt)/Y mice), no Phex protein was detected in immunoblots of femoral bone protein. Stromal cultures from mutant bone marrow were indistinguishable from those of wild-type mice with respect to differentiation and mineralization. The ability of Phex(Jrt)/Y osteoblasts to mineralize and the altered expression levels of matrix proteins compared with the well-studied Hyp mice makes it a unique model with which to further explore the clinical manifestations of XLH and its link to FGF23 as well as to evaluate potential new therapeutic strategies.  相似文献   
2.
3.
It is believed that orthopedic and implant longevity can be improved by optimizing fixation, or direct bone‐implant contact, through the stimulation of new bone formation around the implant. The purpose of this study was to determine whether heat (600°C) or radiofrequency plasma glow discharge (RFGD) pretreatment of Ti6Al4V stimulated calcium‐phosphate mineral formation in cultures of attached MC3T3 osteoprogenitor cells with or without a fibronectin coating. Calcium‐phosphate mineral was analyzed by flame atomic absorption spectrophotometry, scanning electron microscopy (SEM)/electron dispersive X‐ray microanalysis (EDAX) and Fourier transformed infrared spectroscopy (FTIR). RFGD and heat pretreatments produced a general pattern of increased total soluble calcium levels, although the effect of heat pretreatment was greater than that of RFGD. SEM/EDAX showed the presence of calcium‐and phosphorus‐containing particles on untreated and treated disks that were more numerous on fibronectin‐coated disks. These particles were observed earliest (1 week) on RFGD‐pretreated surfaces. FTIR analyses showed that the heat pretreatment produced a general pattern of increased levels of apatite mineral at 2–4 weeks; a greater effect was observed for fibronectin‐coated disks compared to uncoated disks. The observed findings suggest that heat pretreatment of Ti6Al4V increased the total mass of the mineral formed in MC3T3 osteoprogenitor cell cultures more than RFGD while the latter pretreatment hastened the early deposition of mineral. These findings help to support the hypothesis that the pretreatments enhance the osteoinductive properties of the alloy. J. Cell. Biochem. 114: 1917–1927, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
4.
5.
6.
Matrix metalloproteinase (MMP) family proteins play diverse roles in many aspects of cellular processes such as osteoblastic differentiation. Besides, mechanical forces that occur in 3D collagen gel promote the osteoblastic phenotype and accelerate matrix mineralization. Although MMPs have been involved in bone differentiation, the proteolytic cascades triggered by mechanical forces are still not well characterized. In this study, we have investigated the contribution of both proteolytic cascades, MMP-3/MMP-1 and MMP-2/MMP-13/MT1-MMP in the differentiation of human osteoblasts cultured in a floating type I collagen lattice (FL) versus an attached collagen lattice (AL). Compared to AL, contraction of human osteoblasts-populated FL led to a fast (1 day) induction of alkaline phosphatase (ALP), bone sialoprotein (BSP), osteoprotegerin (OPG), and Runx-2 expression. At day 4, osteocalcin (OC) overexpression preceded the formation of calcium-containing nodule formation as assessed by X-ray analyses. MMP-1 and MMP-3 were produced to similar extent by cells cultured in FL and AL, whereas contraction of collagen lattices triggered both mRNA overexpression of MMP-2, MMP-13, and MT1-MMP (i.e., MMP-14), and their activation as evidenced by Western blotting or zymographic analyses. Down-regulating MT1-MMP expression or activity either by siRNA transfection or supplementation of culture medium with TIMP-1 or TIMP-2 highlighted the contribution of that enzyme in OC, ALP, and OPG expression. MMP-2 and MMP-13 were more directly involved in BSP expression. So, these results suggest that the main proteolytic cascade, MMP-2/MMP-13/MT1-MMP, and more particularly, its initial regulator MT1-MMP is involved in osteoblast differentiation through mechanical forces.  相似文献   
7.
8.
Dental pulp cells release adenosine triphosphate (ATP) in response to intrapulpal pressure and the amount released depends on the magnitude of the pressure. ATP regulates the differentiation of stem cells into adipocytes and osteoblasts. However, it is unknown whether extracellular ATP influences the stemness and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). Therefore, this study investigated the effects of extracellular ATP at a low (0.1 μM) and high (10 μM) concentration on the stemness and osteogenic differentiation of SHEDs. Cells were cultured in either growth medium or osteogenic medium with or without 0.1–10 μM ATP. In growth medium, both concentrations of ATP increased the mRNA expression of pluripotent and osteogenic markers. In contrast, in osteogenic medium, 0.1 μM ATP enhanced in vitro mineralization, whereas 10 μM ATP inhibited this process. In addition, 10 μM ATP stimulated the mRNA expression and activity of ectonucleotide pyrophosphatase/phosphodiesterase (ENPP), an enzyme that regulates the phosphate/pyrophosphate ratio. Thus, depending on the growth condition and its concentration, ATP stimulated stemness and in vitro mineralization or inhibited mineralization. In growth medium, both ATP concentrations stimulated pluripotent and osteogenic marker gene expression. However, in osteogenic medium, a biphasic effect was found on in vitro mineralization; the low concentration stimulated, whereas the high concentration inhibited, mineralization. We propose that ATP released due to mechanical stress modulates the stemness and differentiation of SHEDs. J. Cell. Biochem. 119: 488–498, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   
9.
10.
Secreted phosphoprotein‐24 kDa (Spp24) binds cytokines of the bone morphogenetic protein/transforming growth factor‐β (BMP/TGFβ) superfamily and is one of the most abundant serum phosphoproteins synthesized by the liver. Little is known about how Spp24 binding affects BMP signal transduction and osteoblastic differentiation or how this labile protein is transported from the liver to remote tissues, such as bone. When Spp24 was administered to W‐20‐17 mesenchymal stem cells with rhBMP‐2, short‐term Smad1/5 phosphorylation was inhibited, intermediate‐term alkaline phosphatase (ALP) induction was blunted, and long‐term mineralization was unaffected. This supports the hypothesis that Spp24 proteolysis restricts the duration of its regulatory effects, but offers no insight into how Spp24 is transported intact from the liver to bone. When Spp24 was immunopurified from serum and subjected to native PAGE and Western blotting, a high molecular weight band of >500 kDa was found. Under reducing SDS–PAGE, a 24 kDa band corresponding to monomeric Spp24 was liberated, suggesting that Spp24 is bound to a complex linked by disulfide bonds. However, such a complex cannot be disrupted by 60 mM EDTA under non‐reducing condition or in purification buffers containing 600 mM NaCl and 0.1% Tween‐20 at pH 2.7–8.5. LC–MS/MS analysis of affinity‐purified, non‐reducing SDS–PAGE separated, and trypsin digested bands showed that the Spp24 was present in a complex with three α2‐macroglobulins (α2‐macroglobulin [α2M], pregnancy zone protein [PZP] and complement C3 [C3]), as well as ceruloplasmin and the protease inhibitor anti‐thrombin III (Serpin C1), which may protect Spp24 from proteolysis. J. Cell. Biochem. 114: 378–387, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号