首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   58篇
  免费   11篇
  国内免费   8篇
  2024年   1篇
  2023年   3篇
  2022年   8篇
  2021年   5篇
  2020年   6篇
  2019年   9篇
  2018年   8篇
  2017年   3篇
  2016年   2篇
  2015年   5篇
  2014年   11篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
1.
2.
3.
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.  相似文献   
4.
《Autophagy》2013,9(12):1824-1826
Ubiquitinated aggregates are formed in eukaryotic cells in response to several external stimuli, including exposure to bacterial lipopolysaccharide (LPS). Although Salmonella enterica serovar Typhimurium (S. Typhimurium) LPS has been shown to induce aggresome-like induced structures (ALIS) in macrophages, these have not been described in S. Typhimurium-infected macrophages. Given that LPS is present in infection, this suggests that S. Typhimurium might suppress the formation of ALIS. We found that S. Typhimurium induces the formation of ubiquitinated aggregates in epithelial cells and macrophages, but that their presence is masked by the deubiquitinase (DUB) activity of the S. Typhimurium virulence protein, SseL. SseL deubiquitinates SQSTM1/p62-bound proteins found in S. Typhimurium-induced aggregates and ALIS, and reduces the recruitment of autophagic components. While the functions of ALIS and other ubiquitinated aggregates remain unclear, they serve to sequester cytosolic proteins under a variety of stress conditions and are suggested to be involved in host immune defense. During infection, the deubiquitinase activity of SseL reduces autophagic flux in infected cells and favors bacterial replication. This is a new example of how a bacterial pathogen counteracts the autophagy pathway through the action of a translocated virulence protein.  相似文献   
5.
Bim is a pro‐apoptotic Bcl‐2 family member of the BH3‐only protein subgroup. Expression levels of Bim determine apoptosis susceptibility in non‐malignant and in tumour cells. Bim protein expression is downregulated by proteasomal degradation following ERK‐dependent phosphorylation and ubiquitination. Here, we report the identification of a deubiquitinase, Usp27x, that binds Bim upon its ERK‐dependent phosphorylation and can upregulate its expression levels. Overexpression of Usp27x reduces ERK‐dependent Bim ubiquitination, stabilizes phosphorylated Bim, and induces apoptosis in PMA‐stimulated cells, as well as in tumour cells with a constitutively active Raf/ERK pathway. Loss of endogenous Usp27x enhances the Bim‐degrading activity of oncogenic Raf. Overexpression of Usp27x induces low levels of apoptosis in melanoma and non‐small cell lung cancer (NSCLC) cells and substantially enhances apoptosis induced in these cells by the inhibition of ERK signalling. Finally, deletion of Usp27x reduces apoptosis in NSCLC cells treated with an EGFR inhibitor. Thus, Usp27x can trigger via its proteolytic activity the deubiquitination of Bim and enhance its levels, counteracting the anti‐apoptotic effects of ERK activity, and therefore acts as a tumour suppressor.  相似文献   
6.
目的观察去泛素化酶RPN11和增殖相关核标记物Ki67在结直肠癌组织中的表达,研究其与结直肠癌肿瘤细胞增殖的相关性及与结直肠癌临床病理特征的关系。方法采用免疫组织化学SABC法检测56例结直癌组织及20例癌旁正常组织中的RPN11和Ki67表达,结合临床病理学资料进行统计分析。结果免疫组织化学染色显示:RPN11及Ki67在结直肠癌组织的阳性表达率明显高于正常结直肠组织;RPN11和Ki67的表达均与肿瘤分化程度、TNM分期、转移有关,而与性别、年龄无明显相关;RPN11与Ki67的表达呈正相关。结论RPN11和Ki67可能共同参与结直肠癌肿瘤细胞的增殖调控,并促进结直肠癌的发生发展以及浸润转移。  相似文献   
7.
Ubiquitination is vital for multiple cellular processes via dynamic modulation of proteins related to cell growth, proliferation, and survival. Of the ubiquitination system components, E3 ubiquitin ligases and deubiquitinases have the most prominent roles in modulating tumor metastasis. This review will briefly summarize the observations and underlying mechanisms of multiple E3 ubiquitin ligases and deubiquitinases to regulate tumor metastasis. Further, we will discuss the relationship and importance between ubiquitination components and tumor progression.  相似文献   
8.
Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors.  相似文献   
9.
SARS冠状病毒基因组中非结构基因nsp3编码的木瓜样蛋白酶 (PLpro) 在病毒基因组复制及逃避宿主天然免疫中发挥重要作用,是研发抗病毒药物的重要靶标.SARS冠状病毒PLpro是一种病毒编码的去泛素化酶 (DUB).为深入研究SARS冠状病毒 PLpro对泛素样分子 (ubiquitin-like protein,UBL) 的DUB特性,本研究构建缺失 PLpro N末端泛素样结构域 (Ubl) 和下游跨膜结构域 (TM) 的PLpro构建体(constructs),并构建3种缺失蛋白酶催化活性的突变体,检测PLpro对泛素样分子干扰素刺激基因15 (ISG15)及SUMO-1的作用.实验结果表明,PLpro和PLpro-TM 在细胞内具有很强的去ISG(DeISGylation) 活性;缺失PLpro N末端泛素样结构域(Ubl) 对PLpro 的去ISG15 活性没有影响;对PLpro蛋白酶活性位点C1651 和 H1812 突变后,PLpro-TM的去ISG15活性消失,而对D1826位点突变后不影响此活性.PLpro 不具有去SUMO (DeSUMOylation)活性,而PLpro-TM具有一定的去SUMO活性;PLpro催化活性相关的3个关键氨基酸残基 Cys-His-Asp突变后对去SUMO活性有一定的影响.研究结果提示,SARS PLpro除了具有DUB的活性,还具有体内去ISG活性和去SUMO活性;PLpro蛋白酶活性与其去ISG活性之间有一定相关性;PLpro去SUMO-1 活性具有TM 依赖性.SARS冠状病毒PLpro 对泛素样分子作用特性的研究为阐明病毒逃避宿主天然免疫机制和开发新型抗病毒药物提供重要的理论依据.  相似文献   
10.
SARS coronavirus (SARS-CoV) develops an antagonistic mechanism by which to evade the antiviral activities of interferon (IFN). Previous studies suggested that SARS-CoV papain-like protease (PLpro) inhibits activation of the IRF3 pathway, which would normally elicit a robust IFN response, but the mechanism(s) used by SARS PLpro to inhibit activation of the IRF3 pathway is not fully known. In this study, we uncovered a novel mechanism that may explain how SARS PLpro efficiently inhibits activation of the IRF3 pathway. We found that expression of the membrane-anchored Plpro domain (PLpro-TM) from SARS-CoV inhibits STING/TBK1/IKK?-mediated activation of type I IFNs and disrupts the phosphorylation and dimerization of IRF3, which are activated by STING and TBK1. Meanwhile, we showed that PLpro-TM physically interacts with TRAF3, TBK1, IKK?, STING, and IRF3, the key components that assemble the STING-TRAF3-TBK1 complex for activation of IFN expression. However, the interaction between the components in STING-TRAF3-TBK1 complex is disrupted by PLpro-TM. Furthermore, SARS PLpro-TM reduces the levels of ubiquitinated forms of RIG-I, STING, TRAF3, TBK1, and IRF3 in the STING-TRAF3- TBK1 complex. These results collectively point to a new mechanism used by SARS-CoV through which Plpro negatively regulates IRF3 activation by interaction with STING-TRAF3-TBK1 complex, yielding a SARS-CoV countermeasure against host innate immunity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号