首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   2篇
  2022年   1篇
  2020年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
《IRBM》2020,41(4):223-228
A novel approach for separation among normal and heart murmurs sounds based on Phonocardiogram (PCG) analysis is introduced in this paper. The purpose of this work is to find the appropriate algorithm able to detect heart failures. Different features have been extracted from time and frequency domains. After the normalization step, the Principal Component Analysis algorithm is used for data reduction and compression. Support Vectors Machine (SVM), and k-Nearest Neighbors (kNN) classifiers were used with different kernels and number of neighbors in the classification step. Simulation results obtained from different databases are compared. The developed system gave good results when applied to different datasets. The accuracy of 96%, and 100% for the first, and the second dataset respectively were obtained. The algorithm shows its effectiveness in separation between normal and pathological cases.  相似文献   
2.
3.
基于MFCC和GMM的昆虫声音自动识别   总被引:1,自引:0,他引:1  
竺乐庆  张真 《昆虫学报》2012,55(4):466-471
昆虫的运动、 取食、 鸣叫都会发出声音, 这些声音存在种内相似性和种间差异性, 因此可用来识别昆虫的种类。基于昆虫声音的昆虫种类自动检测技术对协助农业和林业从业人员方便地识别昆虫种类非常有意义。本研究采用了语音识别领域里的声音参数化技术来实现昆虫的声音自动鉴别。声音样本经预处理后, 提取梅尔倒谱系数(Mel frequency cepstrum coefficient, MFCC)作为特征, 并用这些样本提取的MFCC特征集训练混合高斯模型(Gaussian mixture model, GMM)。最后用训练所得到的GMM对未知类别的昆虫声音样本进行分类。该方法在包含58种昆虫声音的样本库中进行了评估, 取得了较高的识别正确率(平均精度为98.95%)和较理想的时间性能。该测试结果证明了基于MFCC和GMM的语音参数化技术可以用来有效地识别昆虫种类。  相似文献   
4.
In this work, we report the ab initio folding of three different extended helical peptides namely 2khk, N36, and C34 through conventional molecular dynamics simulation at room temperature using implicit solvation model. Employing adaptive hydrogen bond specific charge (AHBC) scheme to account for the polarization effect of hydrogen bonds established during the simulation, the effective folding of the three extended helices were observed with best backbone RMSDs in comparison to the experimental structures over the helical region determined to be 1.30 Å for 2khk, 0.73 Å for N36 and 0.72 Å for C34. In this study, 2khk will be used as a benchmark case serving as a means to compare the ability of polarized (AHBC) and nonpolarized force field in the folding of an extended helix. Analyses conducted revealed the ability of the AHBC scheme in effectively folding the extended helix by promoting helix growth through the stabilization of backbone hydrogen bonds upon formation during the folding process. Similar observations were also noted when AHBC scheme was employed during the folding of C34 and N36. However, under Amber03 force field, helical structures formed during the folding of 2khk was not accompanied by stabilization thus highlighting the importance of electrostatic polarization in the folding of helical structures. Proteins 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
5.
基于Mel倒谱系数和矢量量化的昆虫声音自动鉴别   总被引:1,自引:0,他引:1  
竺乐庆  王鸿斌  张真 《昆虫学报》2010,53(8):901-907
为了给生产单位害虫管理的普通技术人员提供简便易操作的昆虫种类鉴别方法, 本研究把人类语音识别领域的先进技术应用于昆虫识别, 提出了一种新颖的昆虫声音自动鉴别方法, 用声音参数化技术为昆虫声纹识别设计了一种简单易行的方案。声音信号经过预处理、分段得到一系列的声音样本, 从声音样本提取Mel倒谱系数(MFCC), 并用Linde-Buzo-Gray(LBG)算法对提取的MFCC进行矢量量化(VQ), 所得码字作为声音样本的特征模型。特征参数之间的匹配用搜索最近邻的方法实现。本文方法在包含70种昆虫声音的库中进行了试验, 取得了超过96%的识别率和理想的时间性能。试验结果证明了该方法的有效性。  相似文献   
6.
Sound signals from the respiratory system are largely taken as tokens of human health. Early diagnosis of respiratory tract diseases is of great importance because, if delayed, it exerts irreversible effects on human health. The Coronavirus pandemic, which is deeply shaking the world, has revealed the importance of this diagnosis even more. During the pandemic, it has become the focus of researchers to differentiate symptoms from similar diseases such as influenza. Among these symptoms, the difference in cough sound played a distinctive role in research. Clinical data collected under the supervision of doctors in a reliable environment were used as the dataset consisting of 16 subjects suspected of COVID-19 with a specific patient demographic. Using the polymerase chain reaction test, the suspected subjects were divided into two groups as negative and positive. The negative and positive labels represent the patients with non-COVID and with a COVID-19 cough, respectively. Using the 3D plot or waterfall representation of the signal frequency spectrum, the salient features of the cough data are revealed. In this way, COVID-19 can be differentiated from other coughs by applying effective feature extraction and classification techniques. Power spectral density based on short-time Fourier transform and mel-frequency cepstral coefficients (MFCC) were chosen as the efficient feature extraction method. From among the classification techniques, the support vector machine (SVM) algorithm was applied to the processed signals in order to identify and classify COVID-19 cough. In terms of results evaluation, the cough of subjects with COVID-19 was detected with 95.86% classification accuracy thanks to the radial basis function (RBF) kernel function of SVM and the MFCC method. The diagnosis of COVID-19 coughs was performed with 98.6% and 91.7% sensitivity and specificity, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号