首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   1篇
  国内免费   1篇
  2023年   2篇
  2021年   3篇
  2019年   2篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   14篇
  2013年   7篇
  2012年   2篇
  2011年   5篇
  2010年   4篇
  2009年   5篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有69条查询结果,搜索用时 31 毫秒
1.
Abstract: Methylazoxymethanol (MAM) injection to rats on day 15 of gestation caused a significant rise in monoamine concentrations (1.6, 2.0, and 2.8 times the control value for serotonin, norepinephrine, and dopamine, respectively) accompanying a decrease in the brain weight and DNA content in the cerebral hemispheres of the offspring at 3 months of age; in the brain stem, these changes were much smaller. Similar change of monoamine concentrations was observed in cytosine arabinoside-induced microencephaly. The decrease of DNA content and the elevation of monoamine levels were lower with MAM injection on day 15, 13, or 17 of gestation (in that order). Serotonin content of the MAM-treated cerebral hemispheres was already 50% higher than the control immediately after birth. The activity of tryptophan hydroxylase in the MAM-treated cerebrum was 1.6 times the control value, with no change in the brain stem, while the concentration of tryptophan in the brain and plasma was equal to the control value, suggesting an important role played by this enzyme in the elevation of serotonin content. Although the marked decrease of DNA content in the cerebral hemispheres of MAM-treated rats indicates a loss of cerebral cells due to prenatal MAM poisoning, the kind of cells destroyed remain to be studied. That the remaining neurons, axons, and oligodendroglia were intact was suggested by the normal activity of CNPase.  相似文献   
2.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
3.

Background

We previously reported that the σ1-receptor (σ1R) is down-regulated following cardiac hypertrophy and dysfunction in transverse aortic constriction (TAC) mice. Here we address how σ1R stimulation with the selective σ1R agonist SA4503 restores hypertrophy-induced cardiac dysfunction through σ1R localized in the sarcoplasmic reticulum (SR).

Methods

We first confirmed anti-hypertrophic effects of SA4503 (0.1–1 μM) in cultured cardiomyocytes exposed to angiotensin II (Ang II). Then, to confirm the ameliorative effects of σ1R stimulation in vivo, we administered SA4503 (1.0 mg/kg) and the σ1R antagonist NE-100 (1.0 mg/kg) orally to TAC mice for 4 weeks (once daily).

Results

σ1R stimulation with SA4503 significantly inhibited Ang II-induced cardiomyocyte hypertrophy. Ang II exposure for 72 h impaired phenylephrine (PE)-induced Ca2 + mobilization from the SR into both the cytosol and mitochondria. Treatment of cardiomyocytes with SA4503 largely restored PE-induced Ca2 + mobilization into mitochondria. Exposure of cardiomyocytes to Ang II for 72 h decreased basal ATP content and PE-induced ATP production concomitant with reduced mitochondrial size, while SA4503 treatment completely restored ATP production and mitochondrial size. Pretreatment with NE-100 or siRNA abolished these effects. Chronic SA4503 administration also significantly attenuated myocardial hypertrophy and restored ATP production in TAC mice. SA4503 administration also decreased hypertrophy-induced impairments in LV contractile function.

Conclusions

σ1R stimulation with the specific agonist SA4503 ameliorates cardiac hypertrophy and dysfunction by restoring both mitochondrial Ca2 + mobilization and ATP production via σ1R stimulation.

General significance

Our observations suggest that σ1R stimulation represents a new therapeutic strategy to rescue the heart from hypertrophic dysfunction.  相似文献   
4.
In addition to the appearance of senile plaques and neurofibrillary tangles, Alzheimer''s disease (AD) is characterized by aberrant lipid metabolism and early mitochondrial dysfunction. We recently showed that there was increased functionality of mitochondria‐associated endoplasmic reticulum (ER) membranes (MAM), a subdomain of the ER involved in lipid and cholesterol homeostasis, in presenilin‐deficient cells and in fibroblasts from familial and sporadic AD patients. Individuals carrying the ε4 allele of apolipoprotein E (ApoE4) are at increased risk for developing AD compared to those carrying ApoE3. While the reason for this increased risk is unknown, we hypothesized that it might be associated with elevated MAM function. Using an astrocyte‐conditioned media (ACM) model, we now show that ER–mitochondrial communication and MAM function—as measured by the synthesis of phospholipids and of cholesteryl esters, respectively—are increased significantly in cells treated with ApoE4‐containing ACM as compared to those treated with ApoE3‐containing ACM. Notably, this effect was seen with lipoprotein‐enriched preparations, but not with lipid‐free ApoE protein. These data are consistent with a role of upregulated MAM function in the pathogenesis of AD and may help explain, in part, the contribution of ApoE4 as a risk factor in the disease.  相似文献   
5.
Mycoplasma arthritidis causes arthritis in rodents that resembles human rheumatoid arthritis. It produces a superantigen (MAM) that stimulates production of cytokines by making a bridge between lymphocyte T-cell receptor with the appropriate Vbeta chain, and H-2 1-Ealpha MHC class II molecules. Here we studied MAM-induced nitric oxide (NO) production in mouse peritoneal macrophages and found that it was: (1) time and concentration dependent, (2) possibly derived from inducible NOS synthase since it was reduced significantly by amino guanidine pretreatment, (3) restricted to H-2(K) (C3H/HePas and C3H/HeJ) and H-2(d) strains (BALB/c), (4) independent of TLR4 signaling since the coisogenic strains C3H/HePas and C3H/HeJ (TLR4 deficient) produced similar levels of NO following MAM stimulation, (5) potentiated by lipopolysaccharide, and (6) dependent on the presence of nonadherent peritoneal cells. Neutralization of interferon-gamma (IFNgamma in the peritoneal cell cultures with monoclonal antibodies abolished MAM-induced NO production. Addition of rIFNgamma to the adherent cells substituted the nonadherent cells for MAM-induced NO production. A macrophage cell line, J774A.1 (H-2(d)), also produced NO upon MAM stimulation but only when BALB/c spleen lymphocytes were added. Thus, in murine macrophages, MAM induces NO production that is dependent on signaling through MHC class II molecules and IFNgamma but independent of TLR4 expression.  相似文献   
6.
Some cultured cells contain significant amounts of a rarely recognized phospholipid, phosphatidylthreonine. Since phosphatidylthreonine is a structural analog of phosphatidylserine, the question rises whether it is transported to mitochondria and decarboxylated to phosphatidylisopropanolamine therein. We studied this issue with hamster kidney cell-line using a novel approach, i.e. electrospray mass-spectrometry and stable isotope-labeled precursors. Scanning for a neutral loss of 155, which is characteristic for phosphatidylisopropanolamine, indicated that this lipid is indeed present. The identity of phosphatidylisopropanolamine was supported by the following: (i) it co-chromatographed with phosphatidylethanolamine; (ii) its molecular species profile was similar to that of phosphatidylethanolamine; (iii) its head group was labeled from 13C-threonine; and (iv) its concentration increased in parallel with phosphatidylthreonine. Tests with solubilized decarboxylase and subcellular fractionation studies indicated that the low cellular content of phosphatidylisopropanolamine is due to inefficient decarboxylation, rather than poor translocation of phosphatidylthreonine to mitochondria. Importantly, the average hydrophobicity of phosphatidylisopropanolamine molecular species was significantly less than that of phosphatidylthreonine species, indicating that hydrophilic phosphatidylthreonine species translocate to mitochondria far more rapidly than hydrophobic ones. Parallel results were obtained for phosphatidylserine. These findings imply that efflux from the ER membrane could be the rate-limiting step in the phosphatidylthreonine and -serine translocation to mitochondria.  相似文献   
7.
EGF-induced activation of EGFR tyrosine kinase is known to be inhibited by ganglioside GM3, its dimer, and other mimetics. However, details of the interaction, such as kinetic properties, have not yet been clarified. The direct interaction is now defined by the surface plasmon resonance (SPR) technique. To determine the affinity of EGFR for lyso-GM3 or lyso-GM3 mimetic, these glycolipid ligands were covalently immobilized onto a sensor chip, and binding affinities were investigated. Results of these studies confirmed the direct interaction of lyso-GM3 or its mimetic with EGFR. A strong interaction between EGFR and lyso-GM3 or its mimetic was indicated by increased binding of EGFR to glycolipid-immobilized surface, in an EGFR dose-dependent manner.  相似文献   
8.
9.
Several recent works show structurally and functionally dynamic contacts between mitochondria, the plasma membrane, the endoplasmic reticulum, and other subcellular organelles. Many cellular processes require proper cooperation between the plasma membrane, the nucleus and subcellular vesicular/tubular networks such as mitochondria and the endoplasmic reticulum. It has been suggested that such contacts are crucial for the synthesis and intracellular transport of phospholipids as well as for intracellular Ca2+ homeostasis, controlling fundamental processes like motility and contraction, secretion, cell growth, proliferation and apoptosis. Close contacts between smooth sub-domains of the endoplasmic reticulum and mitochondria have been shown to be required also for maintaining mitochondrial structure. The overall distance between the associating organelle membranes as quantified by electron microscopy is small enough to allow contact formation by proteins present on their surfaces, allowing and regulating their interactions. In this review we give a historical overview of studies on organelle interactions, and summarize the present knowledge and hypotheses concerning their regulation and (patho)physiological consequences.  相似文献   
10.
Mitochondrial and endoplasmic reticulum (ER) networks are fundamental for the maintenance of cellular homeostasis and for determination of cell fate under stress conditions. Recent structural and functional studies revealed the interaction of these networks. These zones of close contact between ER and mitochondria called MAM (mitochondria associated membranes) support communication between the two organelles including bioenergetics and cell survival. The existence of macromolecular complexes in these contact sites has also been revealed. In this contribution, we will review: (i) the ER and mitochondria structure and their dynamics, (ii) the basic principles of ER mitochondrial Ca2+ transport, (iii) the physiological/pathological role of this cross-talk.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号