首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55篇
  免费   0篇
  2018年   3篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   10篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2004年   6篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1996年   1篇
  1993年   1篇
  1984年   2篇
  1981年   2篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
1.
How dietary fatty acids are absorbed into the enterocyte and transported to the ER is not established. We tested the possibility that caveolin-1 containing lipid rafts and endocytic vesicles were involved. Apical brush border membranes took up 15% of albumin bound 3H-oleate whereas brush border membranes from caveolin-1 KO mice took up only 1%. In brush border membranes, the 3H-oleate was in the detergent resistant fraction of an OptiPrep gradient. On OptiPrep gradients of intestinal cytosol, we also found the 3H-oleate in the detergent resistant fraction, separate from OptiPrep gradients spiked with 3H-oleate or 3H-triacylglycerol. Caveolin-1 immuno-depletion of cytosol removed 91% of absorbed 3H-oleate whereas immuno-depletion using IgG, or anti-caveolin-2 or -3 or anti-clathrin antibodies removed 20%. Electron microscopy showed the presence of caveolin-1 containing vesicles in WT mouse cytosol that were 4 fold increased by feeding intestinal sacs 1 mM oleate. No vesicles were seen in caveolin-1 KO mouse cytosol. Caveolin-1 KO mice gained less weight on a 23% fat diet and had increased fat in their stool compared to WT mice. We conclude that dietary fatty acids are absorbed by caveolae in enterocyte brush border membranes, are endocytosed, and transported in cytosol in caveolin-1 containing endocytic vesicles.  相似文献   
2.
In Helicoverpa armigera, female moths began to lay eggs on the third day after emergence. Mating stimulated earlier egg maturation/oogenesis (P = 0.002) and oviposition (P < 0.01). We established a suitable bioassay model for the influence of male accessory glands (MAG) on the physiology of virgin females: Crude extracts of MAG (2- to 3-day-old) were injected into 2-day-old virgin females, and the injected females were dissected 20 h after mating. It was shown that crude extracts of MAG stimulated earlier egg maturation (P < 0.001) and oviposition (the oviposition ratio was more than 2 times the ratio of the control). Proteinaceous components in crude extracts purified by fractionation and sub-fractionation in reverse phase high performance liquid chromatography also stimulated earlier egg maturation (P < 0.01) and ovipositon (more than 2 times the ratio of the control), and we called them the oogenesis and ovipostion factors (OOSF). With SDS-PAGE, the molecular mass of the bands from OOSF was estimated to be between 55-66 KD. Arch.  相似文献   
3.
Myelin associated glycoprotein (Siglec-4) is a myelin adhesion receptor, that is, well established for its role as an inhibitor of axonal outgrowth in nerve injury, mediated by binding to sialic acid containing ligands on the axonal membrane. Because disruption of myelin-ligand interactions promotes axon outgrowth, we have sought to develop potent ligand based inhibitors using natural ligands as scaffolds. Although natural ligands of MAG are glycolipids terminating in the sequence NeuAcα2-3Galβ1-3(±NeuAcα2−6)GalNAcβ-R, we previously established that synthetic O-linked glycoprotein glycans with the same sequence α-linked to Thr exhibited ∼1000-fold increased affinity (∼1 μM). Attempts to increase potency by introducing a benzoylamide substituent at C-9 of the α2-3 sialic acid afforded only a two-fold increase, instead of increases of >100-fold observed for other sialoside ligands of MAG. Surprisingly, however, introduction of a 9-N-fluoro-benzoyl substituent on the α2-6 sialic acid increased affinity 80-fold, resulting in a potent inhibitor with a Kd of 15 nM. Docking this ligand to a model of MAG based on known crystal structures of other siglecs suggests that the Thr positions the glycan such that aryl substitution of the α2-3 sialic acid produces a steric clash with the GalNAc, while attaching an aryl substituent to the other sialic acid positions the substituent near a hydrophobic pocket that accounts to the increase in affinity.  相似文献   
4.
Ronald L. Schnaar 《FEBS letters》2010,584(9):1741-1747
Gangliosides, sialic acid-bearing glycosphingolipids, are expressed at high abundance and complexity in the brain. Altered ganglioside expression results in neural disorders, including seizures and axon degeneration. Brain gangliosides function, in part, by interacting with a ganglioside-binding lectin, myelin-associated glycoprotein (MAG). MAG, on the innermost wrap of the myelin sheath, binds to gangliosides GD1a and GT1b on axons. MAG-ganglioside binding ensures optimal axon-myelin cell-cell interactions, enhances long-term axon-myelin stability and inhibits axon outgrowth after injury. Knowledge of the molecular interactions of brain gangliosides may improve understanding of axon-myelin stability and provide opportunities to enhance recovery after nerve injury.  相似文献   
5.
Ectopic fat accumulation has been linked to lipotoxic events, including the development of insulin resistance in skeletal muscle. Indeed, intramyocellular lipid storage is strongly associated with the development of type 2 diabetes. Research during the last two decades has provided evidence for a role of lipid intermediates like diacylglycerol and ceramide in the induction of lipid-induced insulin resistance. However, recently novel data has been gathered that suggest that the relation between lipid intermediates and insulin resistance is less straightforward than has been previously suggested, and that there are several routes towards lipid-induced insulin resistance. For example, research in this field has shifted towards imbalances in lipid metabolism and lipid droplet dynamics. Next to imbalances in key lipogenic and lipolytic proteins, lipid droplet coat proteins appear to be essential for proper intramyocellular lipid storage, turnover and protection against lipid-induced insulin resistance.Here, we discuss the current knowledge on lipid-induced insulin resistance in skeletal muscle with a focus on the evidence from human studies. Furthermore, we discuss the available data that provides supporting mechanistic information.  相似文献   
6.
Traumatic injury to the brain or spinal cord and multiple sclerosis (MS) share a common pathophysiology with regard to axonal demyelination. Despite advances in central nervous system (CNS) repair in experimental animal models, adequate functional recovery has yet to be achieved in patients in response to any of the current strategies. Functional recovery is dependent, in large part, upon remyelination of spared or regenerating axons. The mammalian CNS maintains an endogenous reservoir of glial precursor cells (GPCs), capable of generating new oligodendrocytes and astrocytes. These GPCs are upregulated following traumatic or demyelinating lesions, followed by their differentiation into oligodendrocytes. However, this innate response does not adequately promote remyelination. As a result, researchers have been focusing their efforts on harvesting, culturing, characterizing, and transplanting GPCs into injured regions of the adult mammalian CNS in a variety of animal models of CNS trauma or demyelinating disease. The technical and logistic considerations for transplanting GPCs are extensive and crucial for optimizing and maintaining cell survival before and after transplantation, promoting myelination, and tracking the fate of transplanted cells. This is especially true in trials of GPC transplantation in combination with other strategies such as neutralization of inhibitors to axonal regeneration or remyelination. Overall, such studies improve our understanding and approach to developing clinically relevant therapies for axonal remyelination following traumatic brain injury (TBI) or spinal cord injury (SCI) and demyelinating diseases such as MS.  相似文献   
7.
We have previously shown that mice deficient in the gene for the myelin-associated glycoprotein (MAG) develop normal myelin in the peripheral nerves, but show axon and myelin degeneration at eight months of age, suggesting that MAG is involved in the maintenance of axon-Schwann cell integrity. The search for molecules that might replace MAG during myelination revealed an overexpression of the neural cell adhesion molecule (N-CAM) at those aspects where MAG is detectable in wild type mice. To test whether N-CAM might compensate for MAG during myelination in MAG-deficient mice, double mutants deficient in both MAG and N-CAM (MAG/N-CAMmice) were generated by cross-breeding the single mutants. Whereas alterations of myelin development were not detectable in either of the single or double mutants, degeneration of myelin and axons occurred approximately 4 weeks earlier in MAG/N-CAMthan in MAGmutants. Furthermore, at 8 weeks of age, single fiber preparation and electron microscopy revealed that the number of profiles indicative of degeneration was substantially increased in MAG/N-CAMmutants when compared to MAGmice. These data suggest that in MAG-deficient mice N-CAM does not compensate for MAG in myelin formation but partially substitutes for it in the maintenance of axon-myelin integrity. Received: 20 May 1996 / Accepted: 19 July 1996  相似文献   
8.
Recent progress in peptide and glycopeptide chemistry make the preparation of peptide and glycopeptide dendrimers of acceptable purity, with designed structural and immunochemical properties reliable. New methodologies using unprotected peptide building blocks have been developed to further increase possibilities of their design and improve their preparation and separation. Sophisticated design of peptide and glycopeptide dendrimers has led to their use as antigens and immunogens, for serodiagnosis and other biochemical uses including drug delivery. Dendrimers bearing peptide with predetermined secondary structures are useful tools in protein de novo design. This article covers synthesis and applications of multiple antigen peptides (MAPs), multiple antigen glycopeptides (MAGs), multiple antigen peptides based on sequential oligopeptide carriers (MAP‐SOCs), glycodendrimers and template‐assembled synthetic proteins (TASPs). Part I deals with the development of various structural forms of MAPs as well as their application as antigens, immunogens, and for immunodiagnostic and biochemical purposes. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
9.
Glycopeptide dendrimers are branched structures containing both carbohydrates and peptides. Various classes of these compounds differing in composition and structure are mentioned, together with their practical use spanning from catalysis, transport vehicles to synthetic vaccines. The main stress is given to glycopeptide dendrimers, namely multiple antigen glycopeptides (MAGs). In MAGs, the core, branches or both are composed of amino acids or peptides. Other classes of glycodendrimers (PAMAM, polypropylene imine, cyclodextrin, calixarene, etc.) are mentioned too, but to a smaller extent. Their syntheses, physicochemical properties and biological activities are given with many examples. Glycopeptide dendrimers can be used as inhibitors of cell surface protein-carbohydrate interactions, intervention with bacterial adhesion, for studying of recognition processes, diagnostics, imaging and contrast agents, mimetics, for complexation of different cationts, as site-specific molecular delivery systems, for therapeutic purposes, as immunodiagnostics and in drug design. Biomedical applications of glycopeptide dendrimers as drug and gene delivery systems are also given.  相似文献   
10.
Membranes are known to respond rapidly to various environmental perturbations by changing their composition and microdomain organization. In previous work we showed that a membrane fluidizer benzyl alcohol (BA) could mimic the effects of heat stress and enhance heat shock protein synthesis in different mammalian cells. Here we explore heat- and BA-induced stress further by characterizing stress-induced membrane lipid changes in mouse melanoma B16 cells. Lipidomic fingerprints revealed that membrane stress achieved either by heat or BA resulted in pronounced and highly specific alterations in lipid metabolism. The loss in polyenes with the concomitant increase in saturated lipid species was shown to be a consequence of the activation of phopholipases (mainly phopholipase A2 and C). A phospholipase C–diacylglycerol lipase–monoacylglycerol lipase pathway was identified in B16 cells and contributed significantly to the production of several lipid mediators upon stress including the potent heat shock modulator, arachidonic acid. The accumulation of cholesterol, ceramide and saturated phosphoglyceride species with raft-forming properties observed upon both heat and BA treatments of B16 cells may explain the condensation of ordered plasma membrane domains previously detected by fluorescence microscopy and may serve as a signalling platform in stress responses or as a primary defence mechanism against the noxious effects of stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号