首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   988篇
  免费   1篇
  国内免费   4篇
  2021年   2篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   17篇
  2012年   5篇
  2011年   4篇
  2010年   3篇
  2009年   8篇
  2008年   29篇
  2007年   30篇
  2006年   45篇
  2005年   39篇
  2004年   34篇
  2003年   31篇
  2002年   33篇
  2001年   42篇
  2000年   64篇
  1999年   38篇
  1998年   43篇
  1997年   58篇
  1996年   43篇
  1995年   48篇
  1994年   43篇
  1993年   45篇
  1992年   29篇
  1991年   43篇
  1990年   33篇
  1989年   28篇
  1988年   34篇
  1987年   23篇
  1986年   22篇
  1985年   20篇
  1984年   16篇
  1983年   4篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
排序方式: 共有993条查询结果,搜索用时 15 毫秒
1.
Oviposition and adult feeding of the leafminer Liriomyza trifollii (Burgess) (Diptera, Agromyzidae) on Lycopersicon pennellii (Corr.) D'Arcy and its F1 hybrid with Lycopersicon esculentum (Mill.) was significantly less than that on the cultivated tomato, L. esculentum. The resistance of L. pennellii and the F1 was reduced following rinsing of foliage with ethanol. Resistant attributes of L. pennellii were transferred to L. esculentum through appression of L. pennellii foliage to L. esculentum leaflets. Application of purified 2,3,4-tri-O-acylglucoses (the principal component of type IV glandular trichome exudate of L. pennellii) to L. esculentum significantly decreased feeding and oviposition on L. esculentum leaflets by 61–99%. Therefore the principal mechanism of resistance to this leafminer by L. pennellii is the secretion of these acylglucoses. Dose response analysis of acylglucoses applied to L. esculentum shows that dosages as low as 10% those found on L. pennellii provide large reductions (91%) in leaf punctures and mines.  相似文献   
2.
Abstract. Comparisons were made between the changes in mRNA levels induced by low night temperatures in the cold–sensitive tomato and two altitudinal ecotypes of the wild species L. hirsutum. Changes in mRNA levels were detected by resolving in vitro translation products of poly(A)+ RNA by 2-D PAGE. The treatment was applied by first growing plants in a thermoperiod of 25/18°C and then switching to 25/6°C. All tomatoes displayed a diurnal cycling in which a set of mRNAs accumulated at the end of the 18°C nights, whereas another accumulated at the end of the 25°C days. The accumulation of night specific mRNAs was inhibited by 6°C nights in the cold sensitive tomatoes while that of the tolerant one was only marginally affected. All tomatoes showed a similar reduction in the apparent turnover rate of the day specific mRNAs during the 6°C nights. Finally, low night temperatures induced the accumulation of six to eight mRNAs in all genotypes. This number increased by 15 in L. esculentum after the seventh night and are likely involved in stress response rather than acclimation/tolerance. The tomato is proposed as a genetic model to discriminate genes involved in acclimation/tolerance from those involved in stress response.  相似文献   
3.
Decapitated tomato plants were supplied via the roots with [8-14C]-kinetin or [8-14C]-benzyladenine in a nutrient solution for a period of 24 h. After this time the root material, the root sap produced during the 24 h period and the nutrient solution remaining at the end of the experiments were analysed for cytokinins. HPLC techniques and chemical treatments were used to tentatively identify radioactive metabolites formed. Uptake of kinetin and benzyladenine by the roots was found to be limited but once within the root tissues metabolism was both rapid and extensive.At least 14 metabolites of kinetin were recovered from root tissue and root sap. Many of these appeared to be degradation products. There was, however, some evidence of formation of zeatin-like derivatives. Side-chain cleavage of the original kinetin which occurs rapidly is suggested as a possible route for the eventual production of these endogenous cytokinin forms.The benzyladenine taken up by the roots was apparently both ribosylated and glucosylated. No unmetabolized benzyladenine was detected in the root tissues after 24 h. Only very low levels of radioactivity were associated with the retention time of adenine, suggesting that in the case of benzyladenine side-chain cleavage is of limited importance.The significance of these reactions in relation to the potential use of cytokinins in the regulation of plant growth is discussed.  相似文献   
4.
Significant control of tomato root knot was achieved by applications of the lectins Concanavalin A (Con A) and Limax flavus agglutinin in greenhouse, growth chamber, and microplot trials. Four consecutive weekly applications at lower concentrations of Con A yielded better control than single applications at a higher total concentration. The present state of knowledge on binding of Con A to soil nematodes and the in vitro effect of this lectin in chemotactic behavior are discussed. The mode of action of Con A on root-knot control is unknown.  相似文献   
5.
The tomato (Lycopersicon esculentum (L.) Mill.) ghost plant is a mutant of the San Marzano cultivar affected in carotenoid biosynthesis. ghost plants exhibit a variable pattern of pigment biosynthesis during development. Cotyledons are green but true leaves are white. Green sectors, which appear to be clonal in origin, are frequently observed in the white tissue. Because of the lack of photosynthesis ghost plants have a very low viability in soil. We have developed a strategy for propagating ghost plants that employs organ culture to generate variegated green-white plants which, supported by the photosynthetic green areas, develop in soil to almost wild-type size. These plants were used to analyze the pigment content of the different tissues observed during development and plastid ultrastructure. Cotyledons and green leaves contain both colored carotenoids and chlorophyll but only the colorless carotenoid phytoene accumulates in white leaves. the plastids in the white tissue of ghost leaves lack internal membrane structures but normal chloroplasts can be observed in the green areas. The chromoplasts of white fruits are also impaired in their ability to form thylakoid membranes.  相似文献   
6.
7.
Summary A method has been developed which allows the isolation of very high molecular weight DNA (>2 million bp) from leaf protoplasts of tomato (Lycopersicon esculentum). The DNA isolated in this manner was digested in agarose with rare-cutting restriction enzymes and separated by pulsed field gel electrophoresis. The size range of the reslting fragments was determined by hybridization to a number of single copy clones and the suitability of these enzymes for the mapping of large DNA fragments was evaluated. Furthermore, five genetically tightly linked single copy clones have been used to begin the construction of a physical map in a region of the genome containing the Tm-2a gene which confers resistance to tobacco mosaic virus. Two of the five clones were found to be on the same 560 kb SalI fragment and therefore are no further apart than that distance. The remaining three markers are distributed over at least 3 million bp, so that the total minimum physical distance of that cluster is at least 4 million bp. The results are discussed with respect to correlations between recombination frequencies and physical distance as well as physical mapping large regions of a complex plant genome like tomato.  相似文献   
8.
Molecular biology of wound-inducible proteinase inhibitors in plants   总被引:4,自引:4,他引:0  
Abstract. The techniques of molecular biology are being employed to investigate at the gene level the systemically mediated, wound-induced accumulation of two defensive proteinase inhibitor proteins in plant leaves. These techniques have added a new dimension to biochemical and physiological studies already underway to understand the mechanism of induction by wounding. The acquisition of cDNAs from the RNAs coding for the two inhibitors facilitated studies of mRNA synthesis in leaves in response to wounding, and provided probes to obtain wound-inducible proteinase inhibitor genes from tomato ( Lycopersicon esculentum ) and potato (Solarium tuberosum) genomes. Successful transformations of tobacco plants with fused genes, containing the 5' and 3' regions of the inhibitor genes with the open reading frame of the chloramphenicol acelyltransferase ( cat ) gene, have provided a wound-inducible chloramphenicol acetyltransferase (CATase) activity with which to seek cis- and transacting elements that regulate wound-inducibility to help to understand the interaction of cytoplasmic and nuclear components of the intracellular communication systems that activate the proteinase inhibitor genes in response to wounding by insect pests.  相似文献   
9.
Abstract. Silver ions effectively inhibited both the initiation and the continuation of tomato ( Lyeopersicon esculentum Mill) ripening. Studies of protein synthesis in vivo showed that application of 2 mol m−3 silver thiosulphate to mature green fruit prevented the appearance of several novel proteins associated with ripening, including the softening enzyme polygalacturonase. However, total protein synthesis, as judged by the incorporation of [35S] methionine into proteins, continued unabated after silver treatment. Ripening was also arrested when silver was supplied after ripening had begun. The accumulation of several ripening-related mRNAs, including that for polygalacturonase, was studied by translation in vitro and using cDNA clones as hybridization probes. Silver was shown to prevent the appearance of polygalaturonase mRNA when supplied to mature green fruit and to cause a rapid reduction in the concentration of mRNA for polygalacturonase and other ripening-related proteins when supplied after ripening had begun. It is proposed that silver exerts its effects due to interaction with the ethylene perception mechanism. The results suggest that perception of ethylene is vital not only for the initiation of ripening but also for the continued expression of genes required for ripening.  相似文献   
10.
Summary As an initial step towards developing a transposon mutagenesis system in tomato, the maize transposable element Ac was transformed into tomato plants via Agrobacterium tumefaciens. Southern analysis of leaf tissue indicated that in nine out of eleven transgenic plants, Ac excised from the T-DNA and reintegrated into new chromosomal locations. The comparison of Ac banding pattern in different leaves of the same primary transformant provided evidnece for transposition during later stages of transgenic plant development. There was no evidence of Ds mobilization in tomato transformants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号