首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   5篇
  22篇
  2021年   1篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2003年   1篇
  2000年   1篇
  1986年   1篇
排序方式: 共有22条查询结果,搜索用时 0 毫秒
1.
The sea acts as an effective dispersal barrier for most terrestrial animal species. Narrow sea straits, therefore, often represent areas where species are able to disperse from one land mass to another. In the Mediterranean Sea, the narrowest connecting points between North Africa and Europe are the Strait of Gibraltar and the Strait of Sicily. In the past, climatic oscillations caused changing sea levels and thus influenced the permeability of these sea straits. We analysed the genetic structure of four butterfly species that all occur on both sides of the Strait of Sicily. In all four species, we observed a lack of genetic differentiation between the populations of North Africa and those of Italy. Species distribution models support the strong cohesiveness in that they show a largely continuous glacial distribution over Italy and North Africa. The data obtained reveal that there was a large exchange of individuals between Italy and the eastern Maghreb during the last ice age. This might not only be the case for the species under investigation in the present study, but also might represent a more general pattern for mobile thermophilic western Palearctic species. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 818–830.  相似文献   
2.
Temperature is one of the most important ecological factors affecting species survival and distributions. Therefore, global climate change, involving increases in mean surface temperature and the occurrence of extreme weather events, may pose a substantial challenge to biodiversity. Whereas tropical ectotherms are believed to be very sensitive to climate change, temperate‐zone species may actually benefit from higher temperatures. However, as in temperate zones large parts of the year are unsuitable for growth and reproduction, seasonal time constraints may complicate matters. Against this background we here investigate the impact of simulated climate change, involving increased mean temperatures and heat waves, across developmental pathways of the butterfly Lycaena tityrus (Poda) (Lepidoptera: Lycaenidae). Increased temperatures speeded up development but decreased pupal mass as expected. However, we found no evidence for detrimental effects of increased temperatures or even simulated heat waves. Furthermore, patterns did not differ between indirectly and directly developing individuals, which are assumed to be more time constrained. Our findings support the notion that not all species will be detrimentally affected by climate change, and suggest that species attributes may be more important than potential time constraints imposed by different developmental pathways.  相似文献   
3.
Ongoing climate change is a major threat to biodiversity. However, although many species clearly suffer from ongoing climate change, others benefit from it, for example, by showing range expansions. However, which specific features determine a species’ vulnerability to climate change? Phenotypic plasticity, which has been described as the first line of defence against environmental change, may be of utmost importance here. Against this background, we here compare plasticity in stress tolerance in 3 copper butterfly species, which differ arguably in their vulnerability to climate change. Specifically, we investigated heat, cold and desiccation resistance after acclimatization to different temperatures in the adult stage. We demonstrate that acclimation at a higher temperature increased heat but decreased cold tolerance and desiccation resistance. Contrary to our predictions, species did not show pronounced variation in stress resistance, though plastic capacities in temperature stress resistance did vary across species. Overall, our results seemed to reflect population—rather than species‐specific patterns. We conclude that the geographical origin of the populations used should be considered even in comparative studies. However, our results suggest that, in the 3 species studied here, vulnerability to climate change is not in the first place determined by stress resistance in the adult stage. As entomological studies focus all too often on adults only, we argue that more research effort should be dedicated to other developmental stages when trying to understand insect responses to environmental change.  相似文献   
4.
Anthropogenic climate change poses substantial challenges to biodiversity conservation. Well‐documented responses include phenological and range shifts, and declines in cold but increases in warm‐adapted species. Thus, some species will suffer while others will benefit from ongoing change, although the biological features determining the prospects of a given species under climate change are largely unknown. By comparing three related butterfly species of different vulnerability to climate change, we show that stress tolerance during early development may be of key importance. The arguably most vulnerable species showed the strongest decline in egg hatching success under heat and desiccation stress, and similar pattern also for hatchling mortality. Research, especially on insects, is often focussed on the adult stage only. Thus, collating more data on stress tolerance in different life stages will be of crucial importance for enhancing our abilities to predict the fate of particular species and populations under ongoing climate change.  相似文献   
5.
F. A. Bink 《Oecologia》1986,70(3):447-451
Summary The relationship of insect growth to host condition was tested on host plants grown by hydroculture with a standard nutrient solution, but under different acidities, ranging from pH 3.5–7.5. The indirect effect of the host on the development of the phytophage was tested in the pupal stage. The host plant Rumex hydrolapathum had its highest nitrogen content in the range pH 5.5–6.5; pupal weight of Lycaena dispar was correlated with nitrogen concentration, ash weight and water content. There is a remarkable difference in element concentration between young and old leaves of the host, which varies with acidity of the rooting substrate.In this experiment a negative relationship was detected between reproduction of the phytophage and stress of the host.  相似文献   
6.
Interest in genetic variation at allozyme loci, especially at phosphoglucose isomerase (PGI), has considerably increased over recent decades. In this study, we investigated variation in food stress sensitivity and flight performance, two traits closely linked to individual fitness, across PGI genotypes in the sooty copper butterfly Lycaena tityrus. PGI genotype significantly affected growth rate and pupal mass, but had no overall effect on development time or flight performance. A significant genotype × sex × feeding treatment interaction showed that females from the rarest genotypes showed the strongest increase in development time under food stress. At the same time, these females exhibited the weakest reduction in body mass compared to non food-stressed individuals, while the most common PGI genotypes showed the highest reduction (significant interaction between genotype and feeding treatment). Such results suggest that effects of food stress on pupal mass may not pose a particularly strong selective pressure in L. tityrus. Generally, sex-specific differences in and effects of food stress on life-history traits were as expected, with, e.g., males showing a more rapid development, lower pupal mass and better flight performance than females.  相似文献   
7.
It is a widespread notion that in arthropods female reproductive output is strongly affected by female size. In butterflies egg size scales positively with female size across species, suggesting a constraint imposed by maternal size. However, in intraspecific comparisons body size often explains only a minor part of the variation in progeny size. We here include representatives of various butterfly families to test the generality of this phenomenon across butterflies. Phenotypic correlations between egg and maternal body size were inconsistent across species: correlations were non-significant for Pararge aegeria and Lycaena tityrus, significantly positive for Papilio machaon, significantly negative for Araschnia levana, and contradictory for Pieris napi. Thus, there was no general pattern linking egg size to maternal size, e.g., caused by an allometric relationship. Consequently, there was at best limited evidence for maternal size acting as a morphological constraint on egg size within butterfly species. Realized fecundity depended on maternal size in P. napi and A. levana, but not in P. aegeria, suggesting that maternal size may affect egg number more strongly than egg size. Yet, variation in fecundity was primarily explained by variation in longevity as is expected for income breeders. Heritability estimates across species were rather similar for pupal mass (ranging between 0.14 and 0.19), but more variable for egg size (0.17–0.31).  相似文献   
8.
Karl I  Fischer K 《Oecologia》2008,155(2):215-225
The temperature–size rule (TSR), which states that body size increases at lower developmental temperatures, appears to be a near-universal law for ectotherms. Although recent studies seem to suggest that the TSR might be adaptive, the underlying developmental mechanisms are thus far largely unknown. Here, we investigate temperature effects on life-history traits, behaviour and physiology in the copper butterfly Lycaena tityrus in order to disentangle the mechanistic basis for the above rule. In L. tityrus the larger body size produced at a lower temperature was proximately due to a greater increase in mass, which was caused by both behavioural and physiological mechanisms: a much-increased food intake and a higher efficiency in converting ingested food into body matter. These mechanisms, combined with temperature-induced changes at the cellular level, may provide general explanations for the TSR. Body fat and protein content increased in butterflies reared at the higher temperature, indicating favourable growth conditions. As predicted from protandry theory, males showed reduced development times, caused by higher growth rates compared to females. The latter was itself related to a higher daily food consumption, while the total food consumption (due to the females’ longer developmental period) and assimilation was higher in females and may underly the sexual body size dimorphism.  相似文献   
9.
Abstract. 1.  Movement patterns of two butterfly species (meadow brown Maniola jurtina L. and scarce copper Lycaenae virgaureae L.) were studied in a 172 ha area within a landscape with a high percentage of suitable habitats for mark–release–recapture experiments.
2.  Adult resource density, but not patch size or larval food plant abundance, influenced the numbers and the fractions of residents, emigrants, and immigrants.
3.  Differences between species were observed in movement frequency and maximum distances moved but not in mean distances moved.
4.  The scarce copper showed much greater movement ability than expected from the results of published studies. This is believed to be a result of the comparatively large size of the study area and the high cover of suitable habitat (>50%).
5.  The mean and maximum distances travelled by butterflies reflected differences in the size of the study area.  相似文献   
10.
Poleward range shifts under climate change involve the colonization of new sites and hence the foundation of new populations at the expanding edge. We studied oviposition site selection in a butterfly under range expansion (Lycaena dispar), a key process for the establishment of new populations. We described and compared the microhabitats used by the species for egg laying with those available across the study sites both in edge and in core populations. We carried out an ecological niche factor analysis (ENFA) to estimate (1) the variety of microhabitats used by the butterfly for egg laying (tolerance) and (2) the extent to which these selected microhabitats deviated from those available (marginality). Microhabitat availability was similar in edge and core populations. Ambient temperature recorded at the site level above the vegetation was on average lower at core populations. In contrast with what is often assumed, edge populations did not have narrower microhabitat use compared to core populations. Females in edge populations even showed a higher degree of generalism: They laid eggs under a wider range of microhabitats. We suggest that this pattern could be related to an overrepresentation of fast deciding personalities in edge populations. We also showed that the thermal time window for active female behavior was reduced in edge populations, which could significantly decrease the time budget for oviposition and decrease the threshold of acceptance during microhabitat selection for oviposition in recently established populations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号