首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  5篇
  2022年   1篇
  2012年   1篇
  2008年   1篇
  2000年   1篇
  1984年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
We previously demonstrated that defects in lipoprotein metabolism alter the distribution of oxygenated polyunsaturated fatty acids (PUFAs) in lipoprotein particles. If these oxidation products are released by lipoprotein lipase (LpL), then their delivery to peripheral tissues with bulk lipids could influence cellular function. Using 26-week-old normolipidemic and hyperlipidemic Zucker rats, we measured PUFA alcohols, epoxides, diols, ketones, and triols (i.e. oxylipins) in esterified and non-esterified fractions of whole plasma, VLDL, and LpL-generated VLDL-lipolysates. Whole plasma, VLDL, and lipolysate oxylipin profiles were distinct and altered by hyperlipidemia. While >90% of the whole plasma oxylipins were esterified, the fraction of each oxylipin class in the VLDL varied: 46% of alcohols, 30% of epoxides, 19% of diols, <10% of ketones, and <1% triols. Whole plasma was dominated by arachidonate alcohols, while the linoleate alcohols, epoxides, and ketones showed an increased prevalence in VLDL. LpL-mediated VLDL lipolysis of PUFA alcohols, diols and ketones was detected and the relative abundance of oxygenated linoleates was enhanced in the lipolysates, relative to their corresponding VLDL. In summary esterified oxylipins were seen to be LpL substrates with heterogeneous distributions among lipoprotein classes. Moreover, oxylipin distributions are changes within the context of obesity-associated dyslipidemia. These results support the notion that the VLDL–LpL axis may facilitate the delivery of plasma oxylipins to the periphery. The physiological implications of these findings are yet to be elucidated; however, these molecules are plausible indicators of systemic oxidative stress, and could report this status to the peripheral tissues.  相似文献   
2.
3.
The fluorescent phospholipid 1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]phosphatidylcholine (C6-NBD-PC) was used as a substrate for porcine pancreatic phospholipase A2 (PA2) and bovine milk lipoprotein lipase (LpL). Hydrolysis of C6-NBD-PC by either enzyme resulted in a greater than 50-fold fluorescence enhancement with no shift in the emission maximum at 540 nm; Ca++ was required for PA2 catalysis. Identification of the products of hydrolysis showed cleavage at the sn-1 and sn-2 positions for LpL and PA2, respectively. For PA2, but not for LpL, there was a marked enhancement of enzyme catalysis at lipid concentrations above the critical micellar concentration of the lipid. Furthermore, apolipoprotein C-II, the activator protein of LpL for long-chain fatty acyl substrates, did not enhance the rate of catalysis of the water-soluble fluorescent phospholipid for either enzyme.  相似文献   
4.
According to numerous studies low-density lipoproteins (LDL) are supposed to interact with the glycosaminoglycan chain(s) of proteoglycans, e.g. with decorin and biglycan, which themselves are subject to receptor-mediated endocytosis. We tested, therefore, whether complexes of LDL and small proteoglycans can be endocytosed by either the LDL- or the small proteoglycan uptake mechanism. However, neither was the endocytosis of LDL significantly influenced by proteoglycans nor that of proteoglycans by LDL. This negative result could be explained by the observation that in vitro complex formation takes place only in buffers of low ionic strength. Under physiological conditions additional molecules may be necessary for complex stabilization. Lipoprotein lipase (LpL) which binds LDL was also able to interact with high affinity with decorin and its glycosaminoglycan-free core protein, both interactions being heparin-sensitive. Regardless of the presence or absence of LDL, LpL stimulated the endocytosis of decorin 1.5-fold, whereas LpL mediated a 4-fold stimulation of LDL uptake in the absence of decorin. No significant additional effect was seen in the presence of small concentrations of proteoglycans whereas in the presence of 1 microM decorin the endocytosis of [125I]LDL was reduced in normal as well as in LDL receptor-deficient fibroblasts. These observations could best be explained by assuming that LpL/LDL complexes are internalized upon binding to membrane-associated heparan sulphate and that small proteoglycans interfere with this process. It could not be ruled out, however, that a small proportion of the complexes is also taken up by the small proteoglycan receptor.  相似文献   
5.
Lipid accumulation in nonadipose tissues can cause lipotoxicity, leading to cell death and severe organ dysfunction. Adipose triglyceride lipase (ATGL) deficiency causes human neutral lipid storage disease and leads to cardiomyopathy; ATGL deficiency has no current treatment. One possible approach to alleviate this disorder has been to alter the diet and reduce the supply of dietary lipids and, hence, myocardial lipid uptake. However, in this study, when we supplied cardiac Atgl KO mice a low- or high-fat diet, we found that heart lipid accumulation, heart dysfunction, and death were not altered. We next deleted lipid uptake pathways in the ATGL-deficient mice through the generation of double KO mice also deficient in either cardiac lipoprotein lipase or cluster of differentiation 36, which is involved in an lipoprotein lipase-independent pathway for FA uptake in the heart. We show that neither deletion ameliorated ATGL-deficient heart dysfunction. Similarly, we determined that non-lipid-containing media did not prevent lipid accumulation by cultured myocytes; rather, the cells switched to increased de novo FA synthesis. Thus, we conclude that pathological storage of lipids in ATGL deficiency cannot be corrected by reducing heart lipid uptake.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号