首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   6篇
  46篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   4篇
  2013年   2篇
  2010年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1982年   1篇
  1972年   1篇
排序方式: 共有46条查询结果,搜索用时 0 毫秒
1.
2.
Hairy roots were obtained following inoculation of the stems of Lobelia inflata L. with Agrobacterium rhizogenes strain ATCC 15834. These hairy roots contained agropine and mannopine. In addition, lobeline was detected by HPLC and confirmed by mass spectrometry. Various media were tested for the growth of hairy roots as well as for the content of lobeline in hairy roots. The growth rate of hairy roots cultured in Nitsch and Nitsch's medium was approximately one third of those cultured in other media. The lobeline content of hairy roots (18–54 g/g dry weight) cultured in these media was the same order of magnitude compared with that of roots of L. inflata (24 g/g dry weight) cultivated in pots. The hairy roots cultured in Nitsch and Nitsch's medium were morphologically different from those cultured in other media.Abbreviations MS medium Murashige and Skoog's medium - 1/2 MS medium one-half strength of the standard Murashige and Skoog's medium - B5 medium Gamborg's B5 medium - NN medium Nitsch and Nitsch's medium - FW fresh weight - DW dry weight  相似文献   
3.
The main aim of this paper is to address consequences of climate warming on loss of habitat and genetic diversity in the enigmatic tropical alpine giant rosette plants using the Ethiopian endemic Lobelia rhynchopetalum as a model. We modeled the habitat suitability of Lrhynchopetalum and assessed how its range is affected under two climate models and four emission scenarios. We used three statistical algorithms calibrated to represent two different complexity levels of the response. We analyzed genetic diversity using amplified fragment length polymorphisms and assessed the impact of the projected range loss. Under all model and scenario combinations and consistent across algorithms and complexity levels, this afro‐alpine flagship species faces massive range reduction. Only 3.4% of its habitat seems to remain suitable on average by 2,080, resulting in loss of 82% (CI 75%–87%) of its genetic diversity. The remaining suitable habitat is projected to be fragmented among and reduced to four mountain peaks, further deteriorating the probability of long‐term sustainability of viable populations. Because of the similar morphological and physiological traits developed through convergent evolution by tropical alpine giant rosette plants in response to diurnal freeze‐thaw cycles, they most likely respond to climate change in a similar way as our study species. We conclude that specialized high‐alpine giant rosette plants, such as L. rhynchopetalum, are likely to face very high risk of extinction following climate warming.  相似文献   
4.
Physiological traits that control the uptake of carbon dioxide and loss of water are key determinants of plant growth and reproduction. Variation in these traits is often correlated with environmental gradients of water, light, and nutrients, suggesting that natural selection is the primary evolutionary mechanism responsible for physiological diversification. Responses to selection, however, can be constrained by the amount of standing genetic variation for physiological traits and genetic correlations between these traits. To examine the potential for constraint on adaptive evolution, we estimated the quantitative genetic basis of physiological trait variation in one population of each of two closely related species (Lobelia siphilitica and L. cardinalis). Restricted maximum likelihood analyses of greenhouse-grown half-sib families were used to estimate genetic variances and covariances for seven traits associated with carbon and water relations. We detected significant genetic variation for all traits in L. siphilitica, suggesting that carbon-gain and water-use traits could evolve in response to natural selection in this population. In particular, narrow-sense heritabilities for photosynthetic rate (A), stomatal conductance (gs), and water-use efficiency (WUE) in our L. siphilitica population were high relative to previous studies in other species. Although there was significant narrow-sense heritability for A in L. cardinalis, we detected little genetic variation for traits associated with water use (gs and WUE), suggesting that our population of this species may be unable to adapt to drier environments. Despite being tightly linked functionally, the genetic correlation between A and gs was not strong and significant in either population. Therefore, our L. siphilitica population would not be genetically constrained from evolving high A (and thus fixing more carbon for growth and reproduction) while also decreasing gs to limit water loss. However, a significant negative genetic correlation existed between WUE and plant size in L. siphilitica, suggesting that high WUE may be negatively associated with high fecundity. In contrast, our results suggest that any constraints on the evolution of photosynthetic and stomatal traits of L. cardinalis are caused primarily by a lack of genetic variation, rather than by genetic correlations between these functionally related traits.  相似文献   
5.
If inbreeding depression is caused by deleterious recessive alleles, as suggested by the partial dominance hypothesis, a negative correlation between inbreeding and inbreeding depression is predicted. This hypothesis has been tested several times by comparisons of closely related species or comparisons of populations of the same species with different histories of inbreeding. However, if one is interested in whether this relationship contributes to mating-system evolution, which occurs within populations, comparisons among families within a population are needed; that is, inbreeding depression among individuals with genetically based differences in their rate of selfing should be compared. In gynodioecious species with self-compatible hermaphrodites, hermaphrodites will have a greater history of potential inbreeding via both selfing and biparental inbreeding as compared to females and may therefore express a lower level of inbreeding depression. We estimated the inbreeding depression of female and hermaphrodite lineages in gynodioecious Lobelia siphilitica in a greenhouse experiment by comparing the performance of selfed and outcrossed progeny, as well as sibling crosses and crosses among subpopulations. We did not find support for lower inbreeding depression in hermaphrodite lineages. Multiplicative inbreeding depression (based on seed germination, juvenile survival, survival to flowering, and flower production in the first growing season) was not significantly different between hermaphrodite lineages (δ = 0.30 ± 0.08) and female lineages (δ = 0.15 ± 0.18), although the trend was for higher inbreeding depression in the hermaphrodite lineages. The population-level estimate of inbreeding depression was relatively low for a gynodioecious species (δ = 0.25) and there was no significant inbreeding depression following biparental inbreeding (δ = 0.01). All measured traits showed significant variation among families, and there was a significant interaction between family and pollination treatment for four traits (germination date, date of first flowering, number of flowers, and aboveground biomass). Our results suggest that the families responded differently to selfing and outcrossing: Some families exhibited lower fitness following selfing whereas others seemed to benefit from selfing as compared to outcrossing. Our results support recent simulation results in that prior inbreeding of the lineages did not determine the level of inbreeding depression. These results also emphasize the importance of determining family-level estimates of inbreeding depression, relative to population-level estimates, for studies of mating-system evolution.  相似文献   
6.
Lobelia giberroa is a giant rosette plant growing in the afro-montane belt of the afro-alpine environment, a unique and little-studied ecosystem occupying the high mountains of eastern Africa. We analysed amplified fragment length polymorphisms (AFLPs) from 11 mountain systems in Ethiopia and Tropical East Africa to infer the phylogeographical history of the species. A total of 191 individuals were investigated from 25 populations. Principal coordinate analysis and population structure analyses revealed three major phylogeographical groups: the Ethiopian mountains and one group on each side of the Rift Valley in Tropical East Africa, respectively: Elgon-Cherangani and Kenya-Aberdare-Kilimanjaro-Meru. Analysis of Molecular Variance showed 55.7% variance among the three groups, suggesting an old divergence. Together with a clear geographical substructure within the main groups, this pattern indicates gradual expansion and supports the montane forest bridge hypothesis, stating that the area occupied by forest was larger and more continuous in previous interglacials and earlier in the present interglacial. Genetic diversity was lower in Ethiopia than in the other two main groups, possibly due to an ancient founder effect when Ethiopia was colonized from the south.  相似文献   
7.
Phytosociological and habitat studies of the phytocoenoses of Luronium natans have been conducted. The present results were compared with data on L. dortmanna and I. lacustris. It is demonstrated that the community of L. natans differs from the other two communities with respect to habitat conditions despite the fact that they have been reported to occur jointly and alongside in Lobelia lakes. It appears that significant differences between the communities are found not only regarding their waters, but also their substrates. L. natans dominated phytocoenoses are confined to oligotrophic, extremely soft waters, markedly poor in Ca2+, but richer in Na+ and SO4 2- than those of Lobelia and Isoëtes. Luronium natans develops best on acidic, highly hydrated substrates rich in organic matter, NO3 and total N. The results obtained indicate that L. natans and the phytocoenoses formed by it are characterized by their narrow ecological amplitude in Poland as opposed to those occurring in western Europe, which tolerate a relatively wide range of habitats. The present findings confirm the data from numerous works, which point to the weak competitive ability of the species compared with species typical of eutrophic waters.  相似文献   
8.
Based on specimens as many as available, a quantitative analysis of character variability and correlation in Lobelia Subgen. Tupa was carried out with the results shown by pictorialized scatter diagram and histogram. Pollen grains and seed coat were examined under SEM. The classitication of the subgenus in China is revised. Twelve specipes are recognized; a new species, L. foliiformis, and a new subspecies, L. colorata subsp. guizhouensis, are described; L. taliensis is reduced to a subspecies or L. colorata, which consists of three subspecies; L. kwangsiensis is treated as a variety of L. davidii in accordance with the treat-ment made by Lian Yong-shan in Fl. Reip. Pop. Sin.73 (2)  相似文献   
9.
Stronger pollen limitation should increase competition among plants, leading to stronger selection on traits important for pollen receipt. The few explicit tests of this hypothesis, however, have provided conflicting support. Using the arithmetic relationship between these two quantities, we show that increased pollen limitation will automatically result in stronger selection (all else equal) although other factors can alter selection independently of pollen limitation. We then tested the hypothesis using two approaches. First, we analysed the published studies containing information on both pollen limitation and selection. Second, we explored how natural selection measured in one Ontario population of Lobelia cardinalis over 3 years and two Michigan populations in 1 year relates to pollen limitation. For the Ontario population, we also explored whether pollinator‐mediated selection is related to pollen limitation. Consistent with the hypothesis, we found an overall positive relationship between selection strength and pollen limitation both among species and within L. cardinalis. Unexpectedly, this relationship was found even for vegetative traits among species, and was not found in L. cardinalis for pollinator‐mediated selection on nearly all trait types.  相似文献   
10.
1. Lobelia dortmanna is a common representative of the small isoetid plants dominating the vegetation in nutrient‐poor lakes in Europe and North America. Because of large permeable root surfaces and continuous air lacunae Lobelia exchanges the majority of O2 and CO2 during photosynthesis across the roots. This leads to profound diel pulses of O2 and CO2 in sandy sediments with low microbial O2 consumption rates. The ready radial root loss of O2 may, however, make Lobelia very susceptible to more reducing sediments. Therefore, we grew Lobelia for 6 months on natural and organically enriched sandy sediments to test how: (i) root oxygenation influenced degradation of organic matter and depth profiles of N and C; (ii) Lobelia and microbial O2 consumption rates influenced pool size and depth penetration of O2 in the sediments; and (iii) sediment enrichment influenced growth and mineral nutrition of Lobelia. 2. Naturally low‐organic sediments (0.32% DW) accumulated organic C and N during the experiment as a result of growth of Lobelia and surface micro‐algae. In contrast, surface layers of enriched sediments (0.58, 0.87 and 2.46% DW) lost organic C and N because of enhanced mineralisation rates because of oxygen availability. In deeper layers of enriched sediments no significant differences in organic C and N pools were found between plant‐covered and plant‐free sediments probably because faster organic degradation because of root oxygenation was balanced by release of organic matter from the plants and because short roots with dense Fe‐Mn coatings in the most enriched sediments constrained O2 release. 3. Depth‐integrated O2 pools were much higher in light than darkness, higher in plant‐covered than plant‐free sediments and higher in sandy than in organically enriched sediments. All sediments had a primary O2 maximum 1–2 mm below the sediment surface in light because of photosynthesis of micro‐algae. Plant‐covered sediments of low organic content (0.32 and 0.58% DW) also had a secondary deep maximum (2–4 cm) because of higher O2 release from Lobelia roots than microbial O2 consumption. Nitrification occurred here resulting in depletion of NH and accumulation of NO. In low organic sediments, oxygen pools increased with higher plant biomass both in light and darkness. The deep O2 and NO3 maxima disappeared in high organic sediments of greater O2 consumption rates and smaller O2 release rates. 4. Lobelia was stressed by increasing O2 consumption rate of the sediments. Plant weight and leaf number declined twofold and maximum root length declined fourfold suggesting severe problems maintaining sufficient axial O2 transport to the root tips because of rapid radial O2 loss. Despite markedly higher nutrient concentrations in the enriched sediments, leaf‐N declined twofold and leaf‐P declined fourfold to growth‐limiting levels. These responses can be explained by constrains on mycorrhisal activity, root metabolism and vascular transport because of O2 depletion. Management efforts to stop the decline and ensure the recovery of the isoetid vegetation should therefore focus on improving water quality as well as sediment suitability for growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号