首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  2009年   1篇
  2007年   1篇
  2004年   1篇
  2000年   1篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
排序方式: 共有7条查询结果,搜索用时 375 毫秒
1
1.
Summary The effect of the cyanogenic glucosides linamarin and lotaustralin and their hydrolyzing enzyme linamarase was studied in a B2 generation segregating for the genes Ac and Li. Plants containing the glucosides are protected against grazing by snails both in the seedling stage and as adult plants. In seedlings, however, there is a direct effect on survival, whereas in adult plants the leaf area of plants containing linamarin/lotaustralin is less reduced under intense grazing. Linamarase has no effect on grazing by snails, possibly as a result of the presence of -glucosidase activity in the gut of these animals. The genes Ac and Li, or genes tightly linked to them, have other effects as well: plants possessing one dominant Ac allele produce fewer flowers than homozygous ac plants. I compared this difference in flower production to the metabolic cost of producing the cyanogenic glucosides. The energy content of the difference in flower head production far exceeded the metabolic cost of cyanoglucoside production in Acac plants. It is possible that the cost of maintaining a certain level of cyanoglucosides is much more important for the plant than the initial cost of biosynthesis. The importance of the effects of Ac and Li in the maintenance of cyanogenic polymorphism in white clover is discussed.  相似文献   
2.
Cassava (Manihot esculenta Crantz) is a known source of linamarin, but difficulties associated with its isolation have prevented it from being exploited as a major source. A batch adsorption process using activated carbon proved successful in its isolation, with ultrafiltration playing a pivotal role in its purification. Thirty-two minutes of contact time was required for 60 g of extract, yielding 1.7 g of purified product. Picrate paper, infra-red and 1HNMR analysis confirmed the presence and structure of linamarin. Cytotoxic effects of linamarin on MCF-7, HT-29 and HL-60 cells were determined using the MTT assay. Cytotoxic effects were significantly increased in the presence of linamarase (β-glucosidase), with a 10–fold decrease in the IC50 values obtained for HL-60 cells. This study thus describes a method for the isolation and purification of linamarin from cassava, as well as its cytotoxicity potential.  相似文献   
3.
Dirk Selmar 《Planta》1993,191(2):191-199
The 14C-labelled cyanogenic glucosides linustatin (diglucoside of acetone cyanohydrin) and linamarin (monoglucoside of acetone cyanohydrin), prepared by feeding [14C]valine to plants of Linum usitatissimum L., were applied to cotyledons of Hevea brasiliensis Muell.-Arg. in order to study their transport. Both [14C]-linustatin and [14C]linamarin were efficiently taken up by the cotyledons. Whereas 14C was recovered completely when [14C]linustatin was applied to the seedling, only about one-half of the radioactivity fed as [14C]linamarin could be accounted for after incubation. This observation is in agreement with the finding that apoplasmic linamarase hydrolyzes linamarin but not the related diglucoside linustatin. These data prove that, in vivo, linamarin does not occur apoplasmically and that linustatin, which is exuded from the endosperm, is taken up by the cotyledons very efficiently. Thus, these findings confirm the linustatin pathway (Selmar et al. 1988, Plant Physiol. 86, 711–716), which describes mobilization and transport of the cyanogenic glucoside linamarin, initiated by the glucosylation of linamarin to yield linustatin. When linustatin is metabolized to non-cyanogenic compounds, in Hevea this cyanogenic diglucoside is hydrolyzed by a diglucosidase which splits off both glucose molecules simultaneously as one gentiobiose moiety (Selmar et al. 1988). In contrast, [14C]linustatin, which is taken up by the cotyledon, is not metabolized but is reconverted in high amounts to the monoglucosidic [14C]linamarin, which then is temporarily stored in the cotyledons. These data demonstrate that in Hevea, besides the simultaneous diglucosidase, there must be present a further diglucosidase which is able to hydrolyze cyanogenic diglucosides sequentially by splitting off only the terminal glucose moiety from linustatin to yield linamarin. From this, it is deduced that the metabolic fate of linustatin, which is transported into the source tissues, depends on the activities of the different diglucosidases. Whereas sequential cleavage — producing linamarin — is purely a part of the process of linamarin translocation (using linustatin as the transport vehicle), simultaneous cleavage, producing acetone cyanohydrin, is part of the process of linamarin metabolization in which the nitrogen from cyanogenic glucosides is used to synthesize non-cyanogenic compounds.  相似文献   
4.
Whereas high activities of β-glucosidase occur in homogenates of leaves of Hevea brasiliensis Muell.-Arg., this enzyme, which is capable of splitting the cyanogenic monoglucoside linamarin (linamarase), is not present in intact protoplasts prepared from the corresponding leaves. Thus, in leaves of H. brasiliensis the entire linamarase is located in the apoplasmic space. By analyzing the vacuoles obtained from leaf protoplasts isolated from mesophyll and epidermal layers of H. brasiliensis leaves, it was shown that the cyanogenic glucoside linamarin is localized exclusively in the central vacuole. Analyses of apoplasmic fluids from leaves of six other cyanogenic species showed that significant linamarase activity is present in the apoplasm of all plants tested. In contrast, no activity of any diglucosidase capable of hydrolyzing the cyanogenic diglucoside linustatin (linustatinase) could be detected in these apoplasmic fluids. As described earlier, any translocation of cyanogenic glucosides involves the interaction of monoglucosidic and diglucosidic cyanogens with the corresponding glycosidases (Selmar, 1993a, Planta 191, 191–199). Based on this, the data on the compartmentation of cyanogenic glucosides and their degrading enzymes in Hevea are discussed with respect to the complex metabolism and the transport of cyanogenic glucosides.  相似文献   
5.
The latex of Hevea brasiliensis, expelled upon bark tapping, is the cytoplasm of anastomosed latex cells in the inner bark of the rubber tree. Latex regeneration between two tappings is one of the major limiting factors of rubber yield. Hevea species contain high amounts of cyanogenic glucosides from which cyanide is released when the plant is damaged providing an efficient defense mechanism against herbivores. In H. brasiliensis, the cyanogenic glucosides mainly consist of the monoglucoside linamarin (synthesized in the leaves), and its diglucoside transport-form, linustatin. Variations in leaf cyanide potential (CNp) were studied using various parameters. Results showed that the younger the leaf, the higher the CNp. Leaf CNp greatly decreased when leaves were directly exposed to sunlight. These results allowed us to determine the best leaf sampling conditions for the comparison of leaf CNp. Under these conditions, leaf CNp was found to vary from less than 25 mM to more than 60 mM. The rubber clones containing the highest leaf CNp were those with the highest yield potential. In mature virgin trees, the CNp of the trunk inner bark was shown to be proportional to leaf CNp and to decrease on tapping. However, the latex itself exhibited very low (if any) CNp, while harboring all the enzymes (β-d-diglucosidase, linamarase and β-cyanoalanine synthase) necessary to metabolize cyanogenic glucosides to generate non-cyanogenic compounds, such as asparagine. This suggests that in the rubber tree bark, cyanogenic glucosides may be a source of buffering nitrogen and glucose, thereby contributing to latex regeneration/production.  相似文献   
6.
Cyanogenic glucosides are phytoanticipins known to be present in more than 2500 plant species. They are considered to have an important role in plant defense against herbivores due to bitter taste and release of toxic hydrogen cyanide upon tissue disruption. Some specialized herbivores, especially insects, preferentially feed on cyanogenic plants. Such herbivores have acquired the ability to metabolize cyanogenic glucosides or to sequester them for use in their predator defense. A few species of Arthropoda (within Diplopoda, Chilopoda, Insecta) are able to de novo synthesize cyanogenic glucosides and, in addition, some of these species are able to sequester cyanogenic glucosides from their host plant (Zygaenidae). Evolutionary aspects of these unique plant-insect interactions with focus on the enzyme systems involved in synthesis and degradation of cyanogenic glucosides are discussed.  相似文献   
7.
 The report describes a system for somatic embryogenesis and direct plant regeneration from the embryos of Manihot glaziovii. Somatic embryos were obtained by culturing young leaf lobes (3–6 mm long) adjacent to the apex in Murashige and Skoog medium containing 18 μm 2,4-dichlorophenoxy acetic acid for 20 days and then transferring them to a maturation medium with 0.5 μm 6-benzylaminopurine. Secondary embryogenesis was induced from cotyledonary segments of somatic embryos by using the same protocol as that for primary embryogenesis. For regeneration, somatic embryos were cultured in medium supplemented with 10−4m kinetin and 53.4% of them developed into plantlets. Linamarin and linamarase were not detected in calli or in somatic embryos. Linamarin content was found to be highest in leaves of regenerated plantlets, followed by stem and root tissues. Levels of linamarase activity were almost the same in leaves and stem tissues and very low in roots. Received: 19 April 1999 / Revision received: 11 August 1999 / Accepted: 17 August 1999  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号