首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   6篇
  国内免费   3篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   6篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   10篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   4篇
  2006年   1篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
  1975年   1篇
排序方式: 共有73条查询结果,搜索用时 62 毫秒
1.
Specific enzymatic bands in disc gel electrophoresis are generally determined by either of two methods: (i) Gel is sliced and the enzymatic activity is assayed on each slice or (ii) gel is stained histochemically, if the product of the enzymatic reaction and the dye can form an insoluble precipitate, and the activity band is located on the gel by a color band. The former is laborious and often inaccurate in the calculation of electrophoretic mobility. The latter, often nonspecific, is not applicable when the enzymatic product cannot form an insoluble precipitate with the dye. Staining with tetrazolium salt has been widely employed for amine oxidase (1–6). However, this method has limitations: (i) Tetrazolium salt is nonspecific for amine oxidase and may show artifacts (6,7), and (ii) the use of tetrazolium salt is limited only to substrates containing indolamine such as tryptamine or serotonin (8). Other substrates, like benzylamine, the most active substrate for plasma amine oxidase, do not form a color band with tetrazolium salt.This communication reports a simple spectrophotometric method for the identification of the enzymatic activity band for amine oxidase on disc gel electrophoresis. Neither slice and assay nor staining is needed. This method may possibly also be used generally for other enzyme systems which have a specific absorption at ultraviolet or visible range.  相似文献   
2.
Among four different genera in Galaxauraceae, species diversity of the genus Tricleocarpa Huisman & Borowitzka is underestimated and requires further examination. In this study, we explored a molecular phylogeny of Tricleocarpa with an emphasis on Taiwan species and reassessed species diversity of the genus from the Indo-Pacific region based on analyses of rbcL and COI-5P sequences and morphological observations. The molecular analyses showed that species of Tricleocarpa examined are grouped into seven clades: six clades in the T. cylindrica group (the T. cylindrica complex, T. confertus, T. jejuensis, T. natalensis and two uncharacterized T. ‘cylindrica’ clades) and one clade as the T. fragilis group. Overall, at least 12 species in Tricleocarpa were detected from the Indo-Pacific region, including a new species, T. confertus S.-L. Liu & S.-M. Lin, from Taiwan. Among them, T. confertus can be separated from other species of Tricleocarpa by a thallus consisting of dichotomous or trichotomous, articulated and moniliform branches with smooth surfaces, constrictions at nodes and slightly anti-triangular in shape. The cystocarp morphology of T. confertus is similar to the T. cylindrica group by having paraphyses intermixing with gonimoblast filaments. Recognition of this new species from other species is also supported by the DNA-based, algorithmic species delimitation approaches. With the combination of molecular phylogeny and species diversity reassessment, our phylogeographic analysis supported a trend that species in the T. fragilis group are restricted in their distribution to subtropical and tropical areas whereas species in the T. cylindrica group have a wide distribution, ranging from temperate through to tropical areas.  相似文献   
3.
4.
MicroRNAs (miRNAs) have attracted attention because of their key regulatory functions in many biological events, including differentiation and tumorigenesis. Recent studies have reported the existence of a reciprocal regulatory loop between the family of let-7 miRNAs and an RNA-binding protein, Lin28, both of which have been documented for their important roles during cell differentiation. Hence, using bipotent K562 human leukemia cells and human CD34+ hematopoietic progenitor cells as research models, we demonstrate that let-7 and Lin28 have contrary roles in megakaryocytic (MK) differentiation with a dynamic balance; expression of miR-181 is capable of effectively repressing Lin28 expression, disrupting the Lin28-let-7 reciprocal regulatory loop, upregulating let-7, and eventually promoting MK differentiation. However, miR-181 lacks a significant effect on hemin-induced erythrocyte differentiation. These results demonstrate that miR-181 can function as a 'molecular switch' during hematopoietic lineage progression specific to MK differentiation, thus providing insight into future development of miRNA-oriented therapeutics.  相似文献   
5.
报道了采自黑龙江省五大连池的蓝藻门2个新种:绿刺星球藻、雅致伪枝藻。  相似文献   
6.
报道寄生拟隐脉叶蝉Sophonia spp.卵的尖角赤眼蜂属1新种,隐脉叶蝉赤眼蜂Hispidophila sophoniae sp.nov.,同时首次描述折脉宽翅赤眼蜂Ufens rimatus Linr的雌性特征,所有研究标本已制片,保存福建农林大学生物防治研究所。  相似文献   
7.
Peter Schönfeld  Lech Wojtczak 《BBA》2007,1767(8):1032-1040
Long-chain nonesterified (“free”) fatty acids (FFA) can affect the mitochondrial generation of reactive oxygen species (ROS) in two ways: (i) by depolarisation of the inner membrane due to the uncoupling effect and (ii) by partly blocking the respiratory chain. In the present work this dual effect was investigated in rat heart and liver mitochondria under conditions of forward and reverse electron transport. Under conditions of the forward electron transport, i.e. with pyruvate plus malate and with succinate (plus rotenone) as respiratory substrates, polyunsaturated fatty acid, arachidonic, and branched-chain saturated fatty acid, phytanic, increased ROS production in parallel with a partial inhibition of the electron transport in the respiratory chain, most likely at the level of complexes I and III. A linear correlation between stimulation of ROS production and inhibition of complex III was found for rat heart mitochondria. This effect on ROS production was further increased in glutathione-depleted mitochondria. Under conditions of the reverse electron transport, i.e. with succinate (without rotenone), unsaturated fatty acids, arachidonic and oleic, straight-chain saturated palmitic acid and branched-chain saturated phytanic acid strongly inhibited ROS production. This inhibition was partly abolished by the blocker of ATP/ADP transfer, carboxyatractyloside, thus indicating that this effect was related to uncoupling (protonophoric) action of fatty acids. It is concluded that in isolated rat heart and liver mitochondria functioning in the forward electron transport mode, unsaturated fatty acids and phytanic acid increase ROS generation by partly inhibiting the electron transport and, most likely, by changing membrane fluidity. Only under conditions of reverse electron transport, fatty acids decrease ROS generation due to their uncoupling action.  相似文献   
8.
MUPP-1 (multi-PDZ domain protein-1) and PATJ (PALS-1-associated tight junction protein) proteins are closely related scaffold proteins and bind to many common interactors including PALS-1 (protein associated with Lin seven) a member of the Crumbs complex. Our goal is to understand how MUPP-1 and PATJ and their interaction with PALS-1 are regulated in the same cells. We have shown that in MCF10A cells there are at least two different and co-existing complexes, PALS-1/MUPP-1 and PALS-1/PATJ. Surprisingly, MUPP-1 levels inversely correlated with PATJ protein levels by acting on the stabilization of the PATJ/PALS-1 complex. Upon MUPP-1 depletion, the increased amounts of PATJ are in part localized at the migrating front of MCF10A cells and are able to recruit more PAR3 (partition defective 3). All together these data indicate that a precise balance between MUPP-1 and PATJ is achieved in epithelial cells by regulating their association with PALS-1.  相似文献   
9.
Cell polarity is an essential process shared by almost all animal tissues. Moreover, cell polarity enables cells to sense and respond to the cues provided by the neighboring cells and the surrounding microenvironment. These responses play a critical role in regulating key physiological processes, including cell migration, proliferation, differentiation, vesicle trafficking and immune responses. The polarity protein complexes regulating these interactions are highly evolutionarily conserved between vertebrates and invertebrates. Interestingly, these polarity complexes interact with each other and key signaling pathways in a cell-polarity context-dependent manner. However, the exact mechanisms by which these interactions take place are poorly understood. In this review, we will focus on the roles of the key polarity complexes SCRIB, PAR and Crumbs in regulating different forms of cell polarity, including epithelial cell polarity, cell migration, asymmetric cell division and the T-cell immunological synapse assembly and signaling.  相似文献   
10.
The insulin‐PI3K‐mTOR pathway exhibits a variety of cardiovascular activities including protection against I/R injury. Lin28a enhanced glucose uptake and insulin‐sensitivity via insulin‐PI3K‐mTOR signalling pathway. However, the role of lin28a on experimental cardiac I/R injury in diabetic mice are not well understood. Diabetic mice underwent 30 min. of ischaemia followed by 3 hrs of reperfusion. Animals were randomized to be treated with lentivirus carrying lin28a siRNA (siLin28a) or lin28a cDNA (Lin28a) 72 hrs before coronary artery ligation. Myocardial infarct size (IS), cardiac function, cardiomyocyte apoptosis and mitochondria morphology in diabetic mice who underwent cardiac I/R injury were compared between groups. The target proteins of lin28a were examined by western blot analysis. Lin28a overexpression significantly reduced myocardial IS, improved LV ejection fraction (LVEF), decreased myocardial apoptotic index and alleviated mitochondria cristae destruction in diabetic mice underwent cardiac I/R injury. Lin28a knockdown exacerbated cardiac I/R injury as demonstrated by increased IS, decreased LVEF, increased apoptotic index and aggravated mitochondria cristae destruction. Interestingly, pre‐treatment with rapamycin abolished the beneficial effects of lin28a overexpression. Lin28a overexpression increased, while Lin28a knockdown decreased the expression of IGF1R, p‐Akt, p‐mTOR and p‐p70s6k after cardiac I/R injury in diabetic mice. Rapamycin pre‐treatment abolished the effects of increased p‐mTOR and p‐p70s6k expression exerted by lin28a overexpression. This study indicates that lin28a overexpression reduces IS, improves cardiac function, decreases cardiomyocyte apoptosis index and alleviates cardiomyocyte mitochondria impairment after cardiac I/R injury in diabetic mice. The mechanism responsible for the effects of lin28a is associated with the insulin‐PI3K‐mTOR dependent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号