首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   0篇
  2021年   1篇
  2019年   1篇
  2017年   1篇
  2015年   4篇
  2014年   5篇
  2013年   3篇
  2012年   4篇
  2011年   7篇
  2010年   5篇
  2009年   2篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
1.
Plaque-forming dsDNA (>330 kb) viruses that infect certain unicellular, eukaryotic chlorella-like green algae contain approximately 375 protein-encoding genes. These proteins include a 94 amino acid K+ channel protein, called Kcv, as well as two putative ligand-gated ion channels. The viruses also encode other proteins that could be involved in the assembly and/or function of ion channels, including protein kinases and a phosphatase, polyamine biosynthetic enzymes and histamine decarboxylase.  相似文献   
2.
Ligand-gated ion channels contain a conserved leucine at position 9′ (L9′) in the M2 transmembrane domain. We used multiple substitutions at this position in the γ subunit of the mouse acetylcholine receptor (AChR) (γL9′) to examine the role of residue polarity at this position in the gating process at both the macroscopic and single-channel levels. The midpoint of the macroscopic dose-response relationship (EC50) and the channel closing rate constant, α, decreased as the polarity of the residue at that position increased, suggesting a stabilization of the open state of the channel. Both parameters showed similar dependencies on the polarity of the substituted residue. These data support the notion that during AChR gating, the amino acid at the 9′ position moves into a polar environment, and that interactions between this residue and the polar environment determine the stability of the open state. Since this residue is conserved in all other members of the ligand-gated ion channel family, we suggest that a similar mechanism applies to the other members of the family. Received: 17 September 1999/Revised: 15 December 1999  相似文献   
3.
在中枢神经系统(central nervous system,CNS)中,锌离子对配体门控型离子通道具有重要的调节作用。锌离子随着神经元的活动从突触前膜的囊泡中释放到突触间隙,对突触内受体进行调控。锌离子抑制N-甲基-D-天冬氨酸(N-methyl-D-aspartate,NMDA)型谷氨酸受体的活性,而对非NMDA型谷氨酸受体的调控具有多样性。由γ氨基丁酸(γ-aminobutyric acid,GABA)受体所介导的抑制性突触传递活动也受到锌离子的抑制;而锌离子对glycine受体则呈现出浓度依赖的双向调节效应。病理条件下,锌离子参与了兴奋性细胞毒作用所触发的神经元凋亡过程。本文主要阐述了在CNS中,锌离子对配体门控型离子通道所介导的突触传递活动的调控作用,以及这些调控作用的生理功能和病理意义。  相似文献   
4.
It is generally accepted that antidepressants and antipsychotics mediate their therapeutic effects via specific interaction with processes related to synaptic neurotransmission in the central nervous system. Besides their well-known classical mechanisms of action, antidepressants and antipsychotics show widely unknown effects, which might also contribute to the pharmacological profile of these agents. There is growing evidence that an interaction of these drugs with allosteric modulatory sites of ligand-gated ion channels (LGICs) might represent a yet unknown principle of action. Such interactions of psychopharmacological drugs with LGICs might play an important role both for the therapeutic efficacy and the side effect profile of these agents. In this review, we focus on the direct interaction of antidepressants and antipsychotics with LGICs, which may provide a basis for the development of novel psychopharmacological drugs.  相似文献   
5.
Ligand-gated ion channels (LGICs) are considered as attractive protein targets in the search for new therapeutic agents. Nowadays, this strategy involves the capability to screen large chemical libraries. We present a new Tag-lite ligand binding assay targeting LGICs on living cells. This technology combines the use of suicide enzyme tags fused to channels of interest with homogeneous time-resolved fluorescence (HTRF) as the detection readout. Using the 5-HT3 receptor as system model, we showed that the pharmacology of the HALO-5HT3 receptor was identical to that of the native receptor. After validation of the assay by using 5-HT3 agonists and antagonists of reference, a pilot screen enabled us to identify azelastine, a well-known histamine H1 antagonist, as a potent 5-HT3 antagonist. This interesting result was confirmed with electrophysiological experiments. The method described here is easy to implement and could be applicable for other LGICs, opening new ways for the screening of chemical libraries.  相似文献   
6.
An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the final destination.  相似文献   
7.
It is now believed that the allosteric modulation produced by ethanol in glycine receptors (GlyRs) depends on alcohol binding to discrete sites within the protein structure. Thus, the differential ethanol sensitivity of diverse GlyR isoforms and mutants was explained by the presence of specific residues in putative alcohol pockets. Here, we demonstrate that ethanol sensitivity in two ligand-gated ion receptor members, the GlyR adult α1 and embryonic α2 subunits, can be modified through selective mutations that rescued or impaired Gβγ modulation. Even though both isoforms were able to physically interact with Gβγ, only the α1 GlyR was functionally modulated by Gβγ and pharmacological ethanol concentrations. Remarkably, the simultaneous switching of two transmembrane and a single extracellular residue in α2 GlyRs was enough to generate GlyRs modulated by Gβγ and low ethanol concentrations. Interestingly, although we found that these TM residues were different to those in the alcohol binding site, the extracellular residue was recently implicated in conformational changes important to generate a pre-open-activated state that precedes ion channel gating. Thus, these results support the idea that the differential ethanol sensitivity of these two GlyR isoforms rests on conformational changes in transmembrane and extracellular residues within the ion channel structure rather than in differences in alcohol binding pockets. Our results describe the molecular basis for the differential ethanol sensitivity of two ligand-gated ion receptor members based on selective Gβγ modulation and provide a new mechanistic framework for allosteric modulations of abuse drugs.  相似文献   
8.
Although five 5-hydroxytryptamine type 3 (5-HT3) subunits (A–E) have been cloned, knowledge on the regulation of their assembly is limited. RIC-3 has been identified as a chaperone specific for the pentameric ligand-gated nicotinic acetylcholine and 5-HT3 receptors. Therefore, we examined the impact of RIC-3 on differently composed 5-HT3 receptors with the focus on 5-HT3C, -D, and -E subunits. The influence of RIC-3 on these receptor subtypes is supported by the presence of RIC3 mRNA in tissues expressing at least one of the subunits 5-HT3C, -D, and -E. Furthermore, immunocytochemical studies on transfected mammalian cells revealed co-localization in the endoplasmic reticulum and direct interaction of RIC-3 with 5-HT3A, -C, -D, and -E. Functional and pharmacological characterization was performed using HEK293 cells expressing 5-HT3A or 5-HT3A + 5-HT3B (or -C, -D, or -E) in the presence or absence of RIC-3. Ca2+ influx analyses revealed that RIC-3 does not influence the 5-HT concentration-response relationship on 5-HT3A receptors but leads to differential increases of 5-HT-induced maximum response (Emax) on cells expressing different subunits. Increases of Emax were due to analogously enhanced Bmax values for binding of the 5-HT3 receptor antagonist [3H]GR65630. The observed enhanced cell surface expression of the tested 5-HT3 subunit combinations correlated with the increased surface expression of 5-HT3A as determined by flow cytometry. In conclusion, we showed that RIC-3 can interact with 5-HT3A, -C, -D, and -E subunits and predominantly enhances the surface expression of homomeric 5-HT3A receptors in HEK293 cells. These data implicate a possible role of RIC-3 in determining 5-HT3 receptor composition in vivo.  相似文献   
9.
Recent publications defined requirements for inter-subunit contacts in a benzodiazepine-sensitive GABAA receptor (GABAARα1β3γ2). There is strong evidence that the heteropentameric receptor contains two α1, two β3, and one γ2 subunit. However, the available data do not distinguish two possibilities: When viewed clockwise from an extracellular viewpoint the subunits could be arranged in either γ2β3α1β3α1 or γ2α1β3α1β3 configurations. Here we use molecular modeling to thread the relevant GABAAR subunit sequences onto a template of homopentameric subunits in the crystal structure of the acetylcholine binding protein (AChBP). The GABAA sequences are known to have 15-18% identity with the acetylcholine binding protein and nearly all residues that are conserved within the nAChR family are present in AChBP. The correctly aligned GABAA sequences were threaded onto the AChBP template in the γ2β3α1β3α1 or γ2α1β3α1β3  arrangements. Only the γ2α1β3α1β3 arrangement satisfied three known criteria: (1) α1 His102 binds at the γ2 subunit interface in proximity to γ2 residues Thr142, Phe77, and Met130; (2) α1 residues 80-100 bind near γ2 residues 91-104; and (3) α1 residues 58-67 bind near the β3 subunit interface. In addition to predicting the most likely inter-subunit arrangement, the model predicts which residues form the GABA and benzodiazepine binding sites.  相似文献   
10.
This review focuses on basic models of allostery, the ambiguous application of the allosteric term in pharmacology illustrated by receptors, the role of thermodynamics in allosteric mechanisms, evolution and design of allostery. The initial step of ligand activation is closure of the agonist-binding cavity. Large entropy increases accompany the agonist-elicited conformational changes of pentameric ligand-gated ion channels due to cavity closure and rearrangement of transmembrane helices. The effects of point mutations on thermodynamic parameters of binding and function can reveal energetic coupling of neighbouring (and distant) amino acid residues in activation. High-order double-mutant cycle analysis and rate-equilibrium linear free-energy relationships can identify the trajectory and conformational spread of activation.Protein assembly and allostery can be deduced from colocalization and physicochemical principles. Molecular evolution has led from homooligomerization of protomers to heterotropic cooperativity and to allosteric regulation. Examples are discussed such as similar paths of protein (dis)assembly and evolution, irreversible evolution, statistical analysis of sequence homology revealing coevolution, different impacts of adaptation and evolution on hemoglobin, and the flagellar motor switch of bacteria. The driving force of dynamic allostery is associated with funnel-like free energy landscapes of protein binding and shifts in conformational fluctuations upon binding. Allostery can be designed based on our increasing knowledge of natural allosteric mechanisms and evolution. The allosteric principle has been applied for various bio/macro/molecular and signal transduction systems as well as in cognitive sciences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号