首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2010年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Recently, it has been found that plants, including tomato (Lycopersicon esculentum), express the Lewis-a epitope, Gal1,3(Fuc1,4)GlcNAc, on some N-glycans. By searching the EST database, it was possible to identify a tomato cDNA encoding a protein, designated FucTC, of 413 amino acids with homology to plant and mammalian 1,3/4-fucosyltransferases. The cDNA was expressed in Pichia pastoris and the recombinant enzyme was found to transfer fucose from GDP-Fuc (Km 16 M) to lacto-N-tetraose (Gal1,3GlcNAc1,3Gal1,4Glc; Km 80 M) as well as to 1,3- and 1,4-galactosylated N-glycans. It is concluded that FucTC is responsible for the biosynthesis of Lewis-a on N-glycans in tomato.  相似文献   
2.
The plasma of the striped bass Morone saxatilis contains a fucose-specific lectin (MsaFBP32) that consists of two F-type carbohydrate recognition domains (CRDs) in tandem. The crystal structure of the complex of MsaFBP32 with l-fucose reported here shows a cylindrical  81-Å-long and  60-Å-wide trimer divided into two globular halves: one containing N-terminal CRDs (N-CRDs) and the other containing C-terminal CRDs (C-CRDs). The resulting binding surfaces at the opposite ends of the cylindrical trimer have the potential to cross-link cell surface or humoral carbohydrate ligands. The N-CRDs and C-CRDs of MsaFBP32 exhibit significant structural differences, suggesting that they recognize different glycans. Analysis of the carbohydrate binding sites provides the structural basis for the observed specificity of MsaFBP32 for simple carbohydrates and suggests that the N-CRD recognizes more complex fucosylated oligosaccharides and with a relatively higher avidity than the C-CRD. Modeling of MsaFBP32 complexed with fucosylated glycans that are widely distributed in prokaryotes and eukaryotes rationalizes the observation that binary tandem CRD F-type lectins function as opsonins by cross-linking “non-self” carbohydrate ligands and “self” carbohydrate ligands, such as sugar structures displayed by microbial pathogens and glycans on the surface of phagocytic cells from the host.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号