首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2901篇
  免费   73篇
  国内免费   59篇
  2023年   12篇
  2022年   19篇
  2021年   25篇
  2020年   27篇
  2019年   47篇
  2018年   49篇
  2017年   32篇
  2016年   41篇
  2015年   138篇
  2014年   396篇
  2013年   329篇
  2012年   396篇
  2011年   413篇
  2010年   291篇
  2009年   78篇
  2008年   80篇
  2007年   60篇
  2006年   67篇
  2005年   61篇
  2004年   46篇
  2003年   40篇
  2002年   31篇
  2001年   20篇
  2000年   25篇
  1999年   18篇
  1998年   12篇
  1997年   19篇
  1996年   18篇
  1995年   11篇
  1994年   19篇
  1993年   18篇
  1992年   17篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   8篇
  1987年   13篇
  1986年   7篇
  1985年   15篇
  1984年   17篇
  1983年   9篇
  1982年   12篇
  1981年   13篇
  1980年   9篇
  1979年   8篇
  1978年   6篇
  1977年   5篇
  1976年   6篇
  1973年   4篇
  1970年   4篇
排序方式: 共有3033条查询结果,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(12):2207-2213
Enhanced biological phosphorus removal (EBPR) technology has been widely considered as a key strategy in preventing eutrophication and recognized as the advancing front of research in wastewater treatment. The key to keep its high efficiency in biological phosphorus removal is to optimize the operation and management of the system. Previous research in this field has undoubtedly improved understanding of the factors hindered overall efficiency of EBPR. However, it is obvious that much remains to be learnt. This paper attempts to review the fundamental understanding in factors inhibiting the stability and reliability of the EBPR systems in the state-of-the-art research. In view of modeling the EBPR systems, an appropriate extension of the current mechanistic models with these inhibitory factors is recommended in order to better simulate and predict the behavior of full-scale and lab-scale EBPR plants. From the perspectives of the further mechanistic and multi-factors study, the direction of denitrifying dephosphatation and granules/biofilms are also discussed. This comprehensive overview will not only help us to understand the overall mechanism of the EBPR process, but also benefit the researchers and engineers to consider all the possible factors affecting the process in the urban sewage treatment plants.  相似文献   
2.
Summary The present study was done to elucidate the biological significance of the Weibel-Palade body of human umbilical vein endothelial cells. Quantitative determinations of these endothelial-specific granules throughout pregnancy revealed that their numbers and size per cell profile were maintained at low levels from 12 to 19 weeks of gestation; then both rapidly increased from 33 weeks to full term. This increase coincided with the development of the rough endoplasmic reticulum and an increase in the number of endothelial cell pinocytotic vesicles. Light-microscopic peroxidase anti-peroxidase and electron-microscopic protein A-gold techniques provided evidence that factor VIII-related antigen was localized in the Weibel-Palade bodies. Furthermore, in vitro treatment of incubated umbilical vein tissue with compound 48/80, a histamine releaser, induced degranulation of Weibel-Palade bodies from the endothelium. The present study indicates that Weibel-Palade bodies are storage sites of both histamine and factor VIII-related antigen and have an important role in the obliteration of this vessel.  相似文献   
3.
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys2nd and Cys6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains.  相似文献   
4.
目的:改进现有的检测表皮生长因子受体(EGFR)基因突变的荧光PCR法并开发出新的试剂盒,将其与直接测序法和ARMS法进行对比,验证该试剂盒用于临床诊断的敏感性、特异性和准确性。方法:收集2013年6月至2015年8月手术确诊的141例非小细胞肺癌(NSCLC)的石蜡包埋组织标本。采用盲法分别使用直接测序法、ARMS法和新试剂盒检测EGFR突变,比较新试剂盒与其他两种检测方法的差异,结果不一致时采用三种方法分别重复检验一次。结果:三种方法检测成功率均为100%,新试剂盒与直接测序法测得结果完全一致的比率达75.9%(107/141),在直接测序法测得的96例突变阳性中,92例在新试剂盒检测中得到验证(95.8%)。而直接测序法显示突变阴性的45例中,新试剂盒检测发现了23例突变阳性,两种检测方法的结果存在统计学差异(x2=40.745,P0.05)。与直接测序法进行比较,新试剂盒检测EGFR突变的敏感性、特异性分别为95.8%、48.9%,阳性预测值、阴性预测值分别为80.0%、84.6%,检测准确度为80.9%。以ARMS检测法为金标准,新试剂盒测得结果完全一致的比率达84.4%(119/141),两者的一致性比较好(K=0.749,P0.05),敏感性、特异性分别为94.1%、86.4%。结论:改进后EGFR基因突变检测的试剂盒在技术上较好地控制了检测结果的假阳性和假阴性,该检测方法较直接测序法具有更好的敏感性和准确性,与现有的ARMS法一致性较高。  相似文献   
5.
Tubulin has been purified from human blood and tonsil lymphocytes. Using gel filtration, the molecular weight of human lymphocyte tubulin was estimated to be 119 000. The proteins was shown to consist of two subunits, with molecular weights of 61 000 and 58 000 comparable to the α and β polypeptides of human brain tubulin. A partial identity reaction was observed between lymphocyte tubulin and human tubulin when tested by double immunodiffusion against a rabbit anti-human brain tubulin antibody. In the presence of GTP, the purified protein polymerized to form microtubules. Tubulin was localized to the cell's juxtacentriolar region by immunofluorescence and electron microscopy. When assayed by a colchicine-binding assay corrected for time decay, the binding affinity was 1.50 ± 0.86 · 106M?1 and a level in normal lymphocytes of 1.21 · 10?2 ± 0.79 g/g of soluble protein was determined. Since chronic lymphocytic leukemia lymphocytes have an anomalous capping behavior as well as an unusual susceptibility to colchicine toxicity, the properties and levels of tubulin were determined in these cells. Similar values were obtained for the level, decay rate, molecular weight, and Ka for colchicine as for normal lymphocytes. Chronic lymphocytic leukemia lymphocyte tubulin polymerized in a normal fashion. It thus appears that a decrease in the quantity or function of tubulin does not account for these anomalies in the chronic lymphocytic leukemia lymphocyte.  相似文献   
6.
Drug resistance is a critical obstacle to effective treatment in patients with chronic myeloid leukemia. To understand the underlying resistance mechanisms in response to imatinib mesylate (IMA) and adriamycin (ADR), the parental K562 cells were treated with low doses of IMA or ADR for 2 months to generate derivative cells with mild, intermediate, and severe resistance to the drugs as defined by their increasing resistance index. PulseDIA-based (DIA [data-independent acquisition]) quantitative proteomics was then employed to reveal the proteome changes in these resistant cells. In total, 7082 proteins from 98,232 peptides were identified and quantified from the dataset using four DIA software tools including OpenSWATH, Spectronaut, DIA-NN, and EncyclopeDIA. Sirtuin signaling pathway was found to be significantly enriched in both ADR-resistant and IMA-resistant K562 cells. In particular, isocitrate dehydrogenase (NADP(+)) 2 was identified as a potential drug target correlated with the drug resistance phenotype, and its inhibition by the antagonist AGI-6780 reversed the acquired resistance in K562 cells to either ADR or IMA. Together, our study has implicated isocitrate dehydrogenase (NADP(+)) 2 as a potential target that can be therapeutically leveraged to alleviate the drug resistance in K562 cells when treated with IMA and ADR.  相似文献   
7.
Nox4-derived ROS is increased in response to hyperglycemia and is required for IGF-I-stimulated Src activation. This study was undertaken to determine the mechanism by which Nox4 mediates sustained Src activation. IGF-I stimulated sustained Src activation, which occurred primarily on the SHPS-1 scaffold protein. In vitro oxidation experiments indicated that Nox4-derived ROS was able to oxidize Src when they are in close proximity, and Src oxidation leads to its activation. Therefore we hypothesized that Nox4 recruitment to the plasma membrane scaffold SHPS-1 allowed localized ROS generation to mediate sustained Src oxidation and activation. To determine the mechanism of Nox4 recruitment, we analyzed the role of Grb2, a component of the SHPS-1 signaling complex. We determined that Nox4 Tyr-491 was phosphorylated after IGF-I stimulation and was responsible for Nox4 binding to the SH2 domain of Grb2. Overexpression of a Nox4 mutant, Y491F, prevented Nox4/Grb2 association. Importantly, it also prevented Nox4 recruitment to SHPS-1. The role of Grb2 was confirmed using a Pyk2 Y881F mutant, which blocked Grb2 recruitment to SHPS-1. Cells expressing this mutant had impaired Nox4 recruitment to SHPS-1. IGF-I-stimulated downstream signaling and biological actions were also significantly impaired in Nox4 Y491F-overexpressing cells. Disruption of Nox4 recruitment to SHPS-1 in aorta from diabetic mice inhibited IGF-I-stimulated Src oxidation and activation as well as cell proliferation. These findings provide insight into the mechanism by which localized Nox4-derived ROS regulates the sustained activity of a tyrosine kinase that is critical for mediating signal transduction and biological actions.  相似文献   
8.
NEK8 (never in mitosis gene A (NIMA)-related kinase 8) is involved in cytoskeleton, cilia, and DNA damage response/repair. Abnormal expression and/or dysfunction of NEK8 are related to cancer development and progression. However, the mechanisms that regulate NEK8 are not well declared. We demonstrated here that pVHL may be involved in regulating NEK8. We found that CAK-I cells with wild-type vhl expressed a lower level of NEK8 than the cells loss of vhl, such as 786-O, 769-P, and A-498 cells. Moreover, pVHL overexpression down-regulated the NEK8 protein in 786-O cells, whereas pVHL knockdown up-regulated NEK8 in CAK-I cells. In addition, we found that the positive hypoxia response elements (HREs) are located in the promoter of the nek8 sequence and hypoxia could induce nek8 expression in different cell types. Consistent with this, down-regulation of hypoxia-inducible factors α (HIF-1α or HIF-2α) by isoform-specific siRNA reduced the ability of hypoxia inducing nek8 expression. In vivo, NEK8 and HIF-1α expression were increased in kidneys of rats subjected to an experimental hypoxia model of ischemia and reperfusion. Furthermore, NEK8 siRNA transfection significantly blocked pVHL-knockdown-induced cilia disassembling, through impairing the pVHL-knockdown-up-regulated NEK8 expression. These results support that nek8 may be a novel hypoxia-inducible gene. In conclusion, our findings show that nek8 may be a new HIF target gene and pVHL can down-regulate NEK8 via HIFs to maintain the primary cilia structure in human renal cancer cells.  相似文献   
9.
This article briefly reviews the classical cell cycle studies using oocytes and zygotes of mainly amphibians in the past century. The discussions are focused on the investigations into the cytoplasmic factors that regulate meiosis during oocyte maturation and the initiation of mitosis during fertilisation, which were carried out in the author's lab between 1967 and 1987. This chronicle traces the development of the problems and the direction in which their solutions were attempted in the course of these investigations. The author tries to answer the following questions: why he decided to study oocyte maturation, how he discovered progesterone as a maturation-inducing hormone, how he discovered and characterised the cytoplasmic regulators of the cell cycle, Maturation-Promoting Factor (MPF) and Cyto-Static Factor (CSF), and how he invented the method of observing cell cycle processes in a cytoplasmic extract in vitro.  相似文献   
10.
Methanogenium organophilum, a non-autotrophic methanogen able to use primary and secondary alcohols as hydrogen donors, was grown on ethanol. Per mol of methane formed, 2 mol of ethanol were oxidized to acetate. In crude extract, an NADP+-dependent alcohol dehydrogenase (ADH) with a pH optimum of about 10.0 catalyzed a rapid (5 mol/min·mg protein; 22°C) oxidation of ethanol to acetaldehyde; after prolonged incubation also acetate was detectable. With NAD+ only 2% of the activity was observed. F420 was not reduced. The crude extract also contained F420: NADP+ oxidoreductase (0.45 mol/min·mg protein) that was not active at the pH optimum of ADH. With added acetaldehyde no net reduction of various electron acceptors was measured. However, the acetaldehyde was dismutated to ethanol and acetate by the crude extract. The dismutation was stimulated by NADP+. These findings suggested that not only the dehydrogenation of alcohol but also of aldehyde to acid was coupled to NADP+ reduction. If the reaction was started with acetaldehyde, formed NADPH probably reduced excess aldehyde immediately to ethanol and in this way gave rise to the observed dismutation. Acetate thiokinase activity (0.11 mol/min·mg) but no acetate kinase or phosphotransacetylase activity was observed. It is concluded that during growth on ethanol further oxidation of acetaldehyde does not occur via acetylCoA and acetyl phosphate and hence is not associated with substrate level phosphorylation. The possibility exists that oxidation of both ethanol and acetaldehyde is catalyzed by ADH. Isolation of a Methanobacterium-like strain with ethanol showed that the ability to use primary alcohols also occurs in genera other than Methanogenium.Non-standard abbreviations ADH alcohol dehydrogenase - Ap5ALi3 P1,P5-Di(adenosine-5-)pentaphosphate - DTE dithioerythritol (2,3-dihydroxy-1,4-dithiolbutane) - F420 N-(N-l-lactyl--l-glutamyl)-l-glutamic acid phosphodiester of 7,8-dimethyl-8-hydroxy-5-deazariboflavin-5-phosphate - Mg. Methanogenium - OD578 optical density at 578 nm - PIPES 1,4-piperazine-diethanesulfonic acid - TRICINE N-(2-hydroxy-1,1-bis[hydroxymethyl]methyl)-glycine - Tris 2-amino-2-hydroxy-methylpropane-1,3-diol - U unit (mol substrate/min)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号