首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
  国内免费   2篇
  2019年   1篇
  2018年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
排序方式: 共有24条查询结果,搜索用时 531 毫秒
1.
In addition to previously isolated ratjadone A we describe three new members of this family, ratjadones B, C, and D, from another strain of the myxobacterium Sorangium cellulosum. We have investigated the properties of these ratjadones with respect to their activity on mammalian cell lines. We found IC(50) values in the picomolar range and a significant increase in the size of nuclei. A further examination showed that they inhibit the export of the leucine-rich nuclear export signal (LR-NES) containing proteins in different cell lines. Ratjadones are able to inhibit the formation of the nuclear export complex composed of the CRM1, RanGTP, and the cargo protein, as shown by two different in vitro assays. Finally, the binding of ratjadone C to CRM1 was demonstrated. These ratjadone activities are in the same concentration range as described for the polyketide leptomycin B (LMB) from Streptomyces sp. Like LMB, it seems that the ratjadones covalently bind to CRM1, inhibit cargo protein binding via LR-NES, and thereby block nuclear export. Thus, the ratjadones represent a new class of natural compounds which inhibit proliferation in eukaryotes by blocking nuclear export.  相似文献   
2.
Poly(ADP-ribosyl)ation is an important post-translational modification which mostly affects nuclear proteins. The major roles of poly(ADP-ribose) synthesis are assigned to DNA damage signalling during base excision repair, apoptosis and excitotoxicity. The transient nature and modulation of poly(ADP-ribose) levels depend mainly on the activity of poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG), the key catabolic enzyme of poly(ADP-ribose). Given the fact that PARG substrate, poly(ADP-ribose), is found almost exclusively in the nucleus and that PARG is mainly localized in the cytoplasm, we wanted to have a closer look at PARG subcellular localization in order to better understand the mechanism by which PARG regulates intracellular poly(ADP-ribose) levels. We examined the subcellular distribution of PARG and of its two enzymatically active C-terminal apoptotic fragments both biochemically and by fluorescence microscopy. Green fluorescent protein (GFP) fusion proteins were constructed for PARG (GFP-PARG), its 74 kDa (GFP-74) and 85 kDa (GFP-85) apoptotic fragments and transiently expressed in COS-7 cells. Localization experiments reveal that all three fusion proteins localize predominantly to the cytoplasm and that a fraction also co-localizes with the Golgi marker FTCD. Moreover, leptomycin B, a drug that specifically inhibits nuclear export signal (NES)-dependent nuclear export, induces a redistribution of GFP-PARG from the cytoplasm to the nucleus and this nuclear accumulation is even more pronounced for the GFP-74 and GFP-85 apoptotic fragments. This observation confirms our hypothesis for the presence of important regions in the PARG sequence that would allow the protein to engage in CRM1-dependent nuclear export. Moreover, the altered nuclear import kinetics found for the apoptotic fragments highlights the importance of PARG N-terminal sequence in modulating PARG nucleocytoplasmic trafficking properties.  相似文献   
3.
Beta-catenin not only plays a role in cadherin-dependent cell adhesion, but also interacts with T-cell factor (TCF)/lymphoid enhancer factor-1 (LEF-1) to affect gene expression. In this report, we describe the effects of exogenous LEF-1 and of treatment with leptomycin B (LMB), a specific inhibitor of CRM1-medicated nuclear export, on the nuclear localization and export of beta-catenin. Normal epithelial cells overexpressing LEF-1 accumulate nuclear beta-catenin in a LEF-1 concentration-dependent manner. Nuclear beta-catenin, once imported from the cytoplasm, is rapidly removed from the nucleus. Treatment with LMB results in dramatic retention of nuclear beta-catenin in normal epithelial cells transfected with LEF-1, and this effect is intensified by treatment of N-Acetyl-leucyl-leucyl-norleucinal together with LMB. Colon carcinoma cells containing an adenomatous polyposis coli mutation retain significant amounts of LEF-1 induced nuclear beta-catenin considerably after the time-point when beta-catenin disappears from the nuclei of LEF-1 transfected normal epithelial cells. beta-Catenin binds directly to CRM1, and overexpression of CRM1 reduces nuclear beta-catenin-mediated transactivation function.  相似文献   
4.
Src-family kinases, cytoplasmic enzymes that participate in various signaling events, are found at not only the plasma membrane but also subcellular compartments, such as the nucleus, the Golgi apparatus and late endosomes/lysosomes. Lyn, a member of the Src-family kinases, is known to play a role in DNA damage response and cell cycle control in the nucleus. However, it is still unclear how the localization of Lyn to the nucleus is regulated. Here, we investigated the mechanism of the distribution of Lyn between the cytoplasm and the nucleus in epitheloid HeLa cells and hematopoietic THP-1 cells. Lyn was definitely detected in purified nuclei by immunofluorescence and immunoblotting analyses. Nuclear accumulation of Lyn was enhanced upon treatment of cells with leptomycin B (LMB), an inhibitor of Crm1-mediated nuclear export. Moreover, Lyn mutants lacking the sites for lipid modification were highly accumulated in the nucleus upon LMB treatment. Intriguingly, inhibition of the kinase activity of Lyn by SU6656, Csk overexpression, or point mutation in the ATP-binding site induced an increase in nuclear Lyn levels. These results suggest that Lyn being imported into and rapidly exported from the nucleus preferentially accumulates in the nucleus by inhibition of the kinase activity and lipid modification.  相似文献   
5.
6.
Luo M  Zhang QC  Lu ZG 《遗传》2012,34(7):927-934
核质运输是真核细胞的重大基本生命活动。核质运输小分子抑制剂不仅可以广泛应用并促进核质运输相关的基础研究,同时也为相关疾病、尤其是病毒性疾病的药物开发提供有利线索。然而,目前针对核质运输的商业化小分子仅有Leptomycin B一种。建立一个针对整个核质运输通路的小分子筛选平台,将有利于筛选与获得多种干扰核质运输的小分子。文章利用NZGFP和CZGFP可以重组为具有荧光GFP的特性,构建NZGFP-NES和CZGFP-NLS,将NZGFP和CZGFP分别定位在细胞质与细胞核中;当核内运或核外运通路被干扰,NZGFP和CZGFP定位发生改变并聚集重组为具有荧光的GFP。该方法可以有效检测核外运小分子抑制剂LeptomycinB的作用,为针对整个核质运输通路的高通量小分子筛选提供了一个有效平台。  相似文献   
7.
8.
Kim YH  Sung KS  Lee SJ  Kim YO  Choi CY  Kim Y 《FEBS letters》2005,579(27):6272-6278
The modification of homeodomain-interacting protein kinase 2 (HIPK2) by small ubiquitin-like modifier 1 (SUMO-1) plays an important role in its targeting into the promyelocytic leukemia body, as well as in its differential interaction with binding partner, but the desumoylation of HIPK2 by SUMO-specific proteases is largely unknown. In this study, we show that HIPK2 is a desumoylation target for the SUMO-specific protease SENP1 that shuttles between the cytoplasm and the nucleus. Mutation analyses reveal that SENP1 contains the nuclear export sequence (NES) within the extreme carboxyl-terminal region, and SENP1 is exported to the cytoplasm in a NES-dependent manner. Sumoylated HIPK2 are deconjugated by SENP1 both in vitro and in cultured cells, and the desumoylation is enhanced either by the forced translocation of SENP1 into the nucleus or by the SENP1 NES mutant. Concomitantly, desumoylation induces dissociation of HIPK2 from nuclear bodies. These results demonstrate that HIPK2 is a target for SENP1 desumoylation, and suggest that the desumoylation of HIPK2 may be regulated by the cytoplasmic-nuclear shuttling of SENP1.  相似文献   
9.
10.
Recent studies have shown that inositol 1,4,5-trisphosphate 3-kinase isoform B (IP3KB) possesses important roles in the development of immune cells. IP3KB can be targeted to multiple cellular compartments, among them nuclear localization and binding in close proximity to the plasma membrane. The B isoform is the only IP3K that is almost ubiquitously expressed in mammalian cells. Detailed mechanisms of its targeting regulation will be important in understanding the role of Ins(1,4,5)P(3) phosphorylation on subcellular calcium signaling and compartment-specific initiation of pathways leading to regulatory active higher phosphorylated inositol phosphates. Here, we identified an exportin 1-dependent nuclear export signal ((134)LQRELQNVQV) and characterized the amino acids responsible for nuclear localization of IP3KB ((129)RKLR). These two targeting domains regulate the amount of nuclear IP3KB in cells. We also demonstrated that the localization of IP3KB at the plasma membrane is due to its binding to cortical actin structures. Intriguingly, all three of these targeting activities reside in one small polypeptide segment (amino acids 104-165), which acts as a multitargeting domain (MTD). Finally, a hitherto unknown subnuclear localization of IP3KB could be demonstrated in rapidly growing H1299 cells. IP3KB is specifically enriched at nuclear invaginations extending perpendicular between the apical and basal surface of the nucleus of these flat cells. Such nuclear invaginations are known to be involved in Ins(1,4,5)P(3)-mediated Ca(2+) signaling of the nucleus. Our findings indicate that IP3KB not only regulates cytoplasmic Ca(2+) signals by phosphorylation of subplasmalemmal and cytoplasmic Ins(1,4,5)P(3) but may also be involved in modulating nuclear Ca(2+) signals generated from these nuclear envelope invaginations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号