首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2015年   1篇
  2013年   3篇
  2011年   2篇
  2009年   1篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
2.
Four cyanobacterial strains including Cyanosarcina sp. SK40, Phormidium sp. PD40‐1, Scytonema sp. TP40 and Leptolyngbya sp. KC45 were selected and investigated for the phycobiliprotein (PBP) content and thermostable antioxidant activity of their cell‐free extracts. The highest content of 181.63 mg/g dry weight phycobiliprotein was found in Leptolyngbya sp. KC45 with phycoerythrin (PE) as the main phycobiliprotein. Among the PBPs of four thermotolerant cyanobacteria, PE from Leptolyngbya sp. KC45 exhibited the highest thermal stability as 80% of the original level remained after being heated at 60°C for 30 min. Antioxidant activities were detected in the cell‐free extracts of all cyanobacteria and that of Leptolyngbya sp. KC45 was also found in the highest value of 7.44 ± 0.14 and 3.89 ± 0.08 mg gallic acid equivalent (GAE) g?1 dry weights determined by 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH) and reducing power assay, respectively. This also corresponded to the phenolic compound content. Based on DPPH and reducing power assay, antioxidant activities of all cyanobacterial extracts showed the high thermostability as approximately 80% remained after being heated at 80°C for 30 min. However, it clearly indicated that the thermostability of antioxidant activity from the hot spring cyanobacterial cell‐free extract was not contributed only by the PE, but also came from phenolic compounds and other oxidative substances.  相似文献   
3.
4.
Black band disease (BBD) is a cyanobacteria-dominated microbial mat that migrates across living coral colonies lysing coral tissue and leaving behind exposed coral skeleton. The mat is sulfide-rich due to the presence of sulfate-reducing bacteria, integral members of the BBD microbial community, and the sulfide they produce is lethal to corals. The effect of sulfide, normally toxic to cyanobacteria, on the photosynthetic capabilities of five BBD cyanobacterial isolates of the genera Geitlerinema (3), Leptolyngbya (1), and Oscillatoria (1) and six non-BBD cyanobacteria of the genera Leptolyngbya (3), Pseudanabaena (2), and Phormidium (1) was examined. Photosynthetic experiments were performed by measuring the photoincorporation of [14C] NaHCO3 under the following conditions: (1) aerobic (no sulfide), (2) anaerobic with 0.5 mM sulfide, and (3) anaerobic with 0.5 mM sulfide and 10 μM 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU). All five BBD cyanobacterial isolates tolerated sulfide by conducting sulfide-resistant oxygenic photosynthesis. Five of the non-BBD cyanobacterial isolates did not tolerate sulfide, although one Pseudanabaena isolate continued to photosynthesize in the presence of sulfide at a considerably reduced rate. None of the isolates conducted anoxygenic photosynthesis with sulfide as an electron donor. This is the first report on the physiology of a culture of Oscillatoria sp. found globally in BBD.  相似文献   
5.
A locally isolated co‐culture of two photosynthetic species [Chlorella vulgaris (Chlorophyta) and Leptolyngbya sp. (Cyanobacteria)] displayed enhanced growth when compared to a Chlorella monoculture; however, the biological mechanisms driving such improvement are currently not well understood. To investigate these mechanisms, this study examined the differential gene expression in the Chlorella between the co‐culture and the monoculture. Suppression subtractive hybridization was performed between mRNA from Chlorella in the co‐culture and in a monoculture, and 105 genes were identified as being putatively differentially expressed. Nine of these genes, corresponding to the key functional categories of energy, metabolism, and protein synthesis, were further examined using quantitative real‐time PCR and showed differential regulation of photosystem I and photosystem II and upregulation of stress‐response genes and a gene encoding an oil‐globule‐associated gene in the co‐culture Chlorella. This differential gene expression study of a Chlorella/cyanobacteria co‐culture will aid in the development of culture strategies capable of taking advantage of these differences for the production of biomass and bioproducts of interest. Knowledge of the underlying genetic causes of the changes in growth and productivity of the species in co‐culture provides insights on possible target genes for optimization of the culture.  相似文献   
6.

Epilithic phototrophic biofilms develop inside Roman Necropolis and Catacombs on rock surfaces exposed to artificial light sources and are composed by a microbial consortium dominated by cyanobacteria. In this work, six non-axenic cultures of Leptolyngbya sp. strains isolated from biofilms from different Roman hypogea and maintained in cultures from 11 to 20 years were analysed along with their associated bacteria isolated in culture. The employment of PCR-fingerprinting techniques, using HIP1 and ERIC derived primers, allowed the clustering in three groups of the six Leptolyngbya strains and the typing of their isolated bacteria. The bacterial fingerprinting patterns were in agreement with the 16S rRNA gene sequencing and showed the presence in Leptolyngbya isolates of Pseudomonas, Stenotrophomonas, Agrobacterium and Bacillus representatives that were detected also in biofilms sampled from catacombs.  相似文献   
7.
Abstract

In this paper we report the metabolism of hexosamines and the cellular compartmentalization of glycoconjugates in the cyanobacterium Leptolyngbya VRUC 135 by using d‐[U‐14C]glucosamine as tracer. Glycoproteins as well as lipopolysaccharides were detected in the cell wall, membrane and buffer‐soluble polymers. Evidence is also reported on the presence of lipopolysaccharides as released polymers.

Abbreviation: RPs, released polymers  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号