首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   6篇
  国内免费   2篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   9篇
  2018年   8篇
  2017年   9篇
  2016年   5篇
  2015年   1篇
  2014年   13篇
  2013年   12篇
  2012年   5篇
  2011年   9篇
  2010年   4篇
  2009年   11篇
  2008年   4篇
  2007年   14篇
  2006年   10篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   3篇
排序方式: 共有189条查询结果,搜索用时 15 毫秒
1.
In the brain of the intact crayfish, three pairs of non-spiking giant interneurons (G1, G2, G3; NGIs) scarcely responded to substrate tilt about the longitudinal axis of the body either in the dark or in the presence of an overhead light. However, when the statolith was removed, these NGIs responded with depolarizing and hyperpolarizing potentials respectively to upward movements of the ipsilateral legs (2nd–5th pereiopods) and upward movements of the contralateral legs produced by substrate tilt. The relationships between the polarity of the potential and the direction of movement in the contralateral legs were opposite to those in the ipsilateral legs. The amplitude of the responses was proportional to the frequency (0.5-0.05 Hz) and amplitude of tilting. When the legs were moved unilaterally, the NGIs responded with depolarizing and hyperpolarizing potentials to upward movements of the ipsilateral legs and to upward movements of the contralateral legs, respectively. When the legs were moved bilaterally in the same direction by upward or downward movement of the substrate, the NGIs scarcely responded to the leg movements. A hypothetical model is presented to account for the pathways of sensory inputs to the NGIs and the role of NGIs in compensatory oculomotor system.  相似文献   
2.
Summary Somatic embryogenesis and plant regeneration of banana and plantain cultivars (Musa spp.) were obtained by culturing young male flowers. Multiplication and maintenance of embryogenic cultures were achieved by culturing somatic embryos in a temporary immersion system (SIT). A multiplication rate of 40 allowed us to obtain more than 6000 somatic embryos after 6 mo. of subculture. Plant recovery frequencies were 60 to 70%. This method was expanded to different banana and plantain genomic groups.  相似文献   
3.
The first sign of developing intrafusal fibers in chicken leg muscles appeared on embryonic day (E) 13 when sensory axons contacted undifferentiated myotubes. In sections incubated with monoclonal antibodies against myosin heavy chains (MHC) diverse immunostaining was observed within the developing intrafusal fiber bundle. Large primary intrafusal myotubes immunostained moderately to strongly for embryonic and neonatal MHC, but they were unreactive or reacted only weakly with antibodies against slow MHC. Smaller, secondary intrafusal myotubes reacted only weakly to moderately for embryonic and neonatal MHC, but 1–2 days after their formation they reacted strongly for slow and slow-tonic MHC. In contrast to mammals, slow-tonic MHC was also observed in extrafusal fibers. Intrafusal fibers derived from primary myotubes acquired fast MHC and retained at least a moderate level of embryonic MHC. On the other hand, intrafusal fibers developing from secondary myotubes lost the embryonic and neonatal isoforms prior to hatching and became slow. Based on relative amounts of embryonic, neonatal and slow MHC future fast and slow intrafusal fibers could be first identified at E14. At the polar regions of intrafusal fibers positions of nerve endings and acetylcholinesterase activity were seen to match as early as E16. Approximately equal numbers of slow and fast intrafusal fibers formed prenatally; however, in postnatal muscle spindles fast fibers were usually in the majority, suggesting that some fibers transformed from slow to fast.  相似文献   
4.
Summary A method of staging late third instar larvae on the basis of salivary gland morphology is described. Using this technique, we investigated stage related amino acid requirements forDrosophila leg disc evagination in vitro. It was found that the requirement for glutamine lasted longer than that of proline. The staging technique should help in the detailed exploration of the late 3rd instar time period in order to bridge the gap between biochemistry and morphogenesis in the initiation of disc evagination.  相似文献   
5.
doi: 10.1111/j.1741‐2358.2012.00657.x The effect of immersion cleansers on gloss, colour and sorption of acetal denture base material Objective: To study the effect of peroxide and hypochlorite cleansers on gloss, colour and sorption of acetal denture resins. Materials and methods: Pink acetal and thermoplastic acrylic resins were evaluated. Thirty‐five specimens 39 × 39 × 1.8 mm of each resin were prepared. Each group of specimens (n = 7) was then immersed into cleansers for 100 days. Group I immersed in tap water, Group II in Corega Extradent for 5 min, Group III in Corega Extradent for 8 h, Group IV in NitrAdine? Seniors for 15 min and Group V in NaOCl 5.25%. Gloss, colour and weight measurements were taken initially and after 100 days. Data subjected to two‐way anova and Tukey’s test at α = 0.05. Results: Acrylic resin showed reductions of glossiness from ?5 to ?15 and acetal from ?0.2 to ?6. Colour changes (ΔΕ*) ranged from 2.64 to 7.64 for acrylic and 2.77 to 26.54 for acetal resin. Sorption for acrylic ranged from 11.64 to 17.06 μg/mm3 and 9.18 to 24.79 μg/mm3 for acetal resin. The results of (ΔΕ*) and sorption showed an interaction between denture resins and cleansers. Conclusions: The gloss of acetal resin was less affected by water, peroxides and NaOCl 5.25% compared with acrylic resin. Acetal resin showed clinically acceptable (ΔΕ*) whereas acrylic resin unacceptable ones for water and peroxide solutions. The immersion of acetal resin in NaOCl 5.25% showed clinically unacceptable (ΔΕ*) and higher sorption and should be avoided or should be managed with care.  相似文献   
6.
Bacteriophages might be the main ‘predators'' in the marine deep subsurface and probably have a major impact on indigenous microbial communities. To identify their function within this habitat, we have determined their abundance and distribution along the sediment columns of two continental margin and two open ocean sites that were recovered during Leg 201 of the Ocean Drilling Program. For all investigated sites, viral abundance followed the total cell numbers with a virus-to-cell ratio between 1 and 10 in the upper 100 mbsf (meters below seafloor). An increasing ratio of about 20 in deeper layers indicated an ongoing viral production in up to 11 Ma old sediments. We have used Rhizobium radiobacter as the most frequently isolated organism from the deep subsurface with a high in situ abundance to identify the frequency of associated rhizobiophages. In this study, 16S rRNA gene copies of R. radiobacter accounted for up to 5.6% of total bacterial 16S rRNA genes (average: 0.75%) as detected by quantitative PCR. A distinctive distribution was identified for R. radiobacter as indicated by a site-specific arrangement of genetically similar populations. Whole genome information of rhizobiophage RR1-A was used to generate a primer system for quantitative PCR specifically targeting the prophage antirepressor gene, indicative for temperate phages. The quantification of this gene within various sediment horizons showed a contribution of temperate phages of up to 14.3% to the total viral abundance. Thus, the high amount of temperate phages within the sediments and among all investigated isolates indicates that lysogeny is the main viral proliferation mode in deep subsurface populations.  相似文献   
7.
The attachment ability of insects on surfaces are associated not only with the micro- and nanostructure of the adhering part of an attachment device, but also with the global scale kinematics responsible for contact formation and release. In the present study, the locomotory techniques of several representatives of insects from four different orders (Orthoptera, Heteroptera, Coleoptera, and Hymenoptera), possessing different types of attachment structures, are described. The study is based on video recordings of insects walking on a flat surface and on cylindrical rods of various thickness, imitating plant stems. Attachment devices of tarsi and pretarsi were visualized using Scanning Electron Microscopy. The results show a different manner in the use of adhesive structures on substrates with various curvatures. Insects bearing attachment pads on proximal tarsomeres usually touch flat and curved substrates using all tarsomeres, whereas insects with their attachment devices on the distal tarsomeres usually walk on flat surfaces using the distal tarsomeres of the overextended tarsus. On substrates, with diameters comparable to or larger than the tarsus length, insects walk above the stem by clasping the stem with the bent tarsi. On thin stems, insects clasp the stem between their tarsi and hang under the stem. Thus, on thin and thick rods, forces applied to attachment organs act in opposite directions. There are two methods of leg positioning for walking on a rough flat substrate. In the first case, the tarsus is straightened and the rough substrate is gripped between the claws and the proximal complex of attachment devices (tarsal euplantulae, fossulae spongiosa, and terminal spurs of tibiae). In the second case the tibia does not touch the substrate; the insect is supported only by distal tarsomeres. The tarsus is in an overextended condition. On rods, with diameters comparable to or larger than the tarsus length, insects walk by clasping the stem with the bent tarsi. This posture is characteristic for the majority of insects independent of the tarsal position they normally use while walking on a plane. If the rod’s diameter is smaller than the tarsus length, walking insects usually clutch it between contralateral tarsi. Using such a posture they are supported by interlocking or by strong friction, generated by attachment devices of the proximal tarsomeres, and do not use attachment devices of the pretarsus. Contact with the substrate is reinforced due to the coordinated contralateral clutch using all supporting legs. It is concluded that the use of different types of attachment structures correlates with locomotory techniques. Handling Editor: Heikki Hokkanen  相似文献   
8.
Several types of cryostimulation have been recently proposed to rapidly lower skin temperature therefore gaining a possible neuro/muscular recovery after strenuous exercise or, more generally, in sports. Local cryostimulation may be a viable and relatively portable tool to obtain physiological benefits in previously-efforted muscular districts. However, cohesive and standardized cryo-exposure protocols are lacking as well as the righteous procedure to efficaciously combine duration, treatments and temperature in relation to desirable effects on muscular strength. In this randomized-controlled study, fifty young women were tested for maximum isometric handgrip strength, before and after exhausting contractions.Following the fatiguing protocol, the intervention group (cryo, n = 25, 24.7 ± 2.5 years, BMI 21.7 ± 1.8 kg/m2) underwent a 6-min local cryostimulation (−160 °C) on the extensor-flexor muscles of the dominant arm, while control-matched peers sat rested in a thermo-neutral room (22 ± 0.5 °C). Handgrip tests were repeated at baseline (T0), after cryostimulation (T1), and 15 min after T1 (T2). Throughout the protocol, the AUC of the strength performance was significantly higher in the cryo- compared to control group (P = 0.006). In particular, following fatigue and cryostimulation, the cryo group preserved higher strength at T1 with respect to controls (26.8 ± 2.8 vs 23.9 ± 2.8 kg, Bonferroni's post-hoc, P < 0.01). Likewise, ventral and dorsal temperature, recorded with a thermal camera, were lower in cryo- than control group (P < 0.0001).In conclusion, a brief session of local cryostimulation may acutely preserve maximal isometric force in young women following a fatiguing protocol. These findings may have implications in orchestrating strategies of district muscular recovery.  相似文献   
9.
The polyethylene glycol (PEG) treatment of ciprofloxacin-Indion 234 complex was aimed to retard rapid ion exchange drug release at gastric pH. Ciprofloxacin loading on Indion 234 was performed in a batch process, and the amount of K+ in Indion 234 displaced by drug with time was studied as equilibrium constant KDM. Drug-resin complex (DRC) was treated with aqueous PEG solution (0.5%–2% wt/vol) of different molecular weights (MWs) for 2 to 30 minutes. The PEG-treated ciprofloxacin-Indion 234 complex was evaluated for particle size, water absorption time, and drug release at gastric pH. During drug loading on Indion 234, the equilibrium constant (KDM) increased rapidly up to 20 minutes with efficient drug loading. Increased time of immersion of the drug resinate in PEG solutions significantly retained higher size particles upon dehydration. The larger DRC particles showed longer water absorption times owing to compromised hydrating power. The untreated DRC showed insignificant drug release in deionized water; while at gastric pH, ciprofloxacin release was complete in 90 minutes. A trend of increased residual particle size, proportionate increase in water absorption time, and hence the retardation of release with time of immersion was evident in PEG-treated DRC. The time of immersion of DRC in PEG-treated DRC. The time of immersion of DRC in PEG solution had predominant release retardant effect, while the effect of molecular weight of PEG was insignificant. Thus, PEG treatment of DRC successfully retards ciprofloxacin ion exchange release in acidic pH.  相似文献   
10.
The development of the Drosophila leg is a good model to study processes of pattern formation, cell death and segmentation. Such processes require the coordinate activity of different genes and signaling pathways that progressively subdivide the leg territory into smaller domains. One of the main pathways needed for leg development is the Notch pathway, required for determining the proximo-distal axis of the leg and for the formation of the joints that separate different leg segments. The mechanisms required to coordinate such events are largely unknown. We describe here that the zinc finger homeodomain-2 (zfh-2) gene is highly expressed in cells that will form the leg joints and needed to establish a correct size and pattern in the distal leg. There is an early requirement of zfh-2 to establish the correct proximo-distal axis, but zfh-2 is also needed at late third instar to form the joint between the fourth and fifth tarsal segments. The expression of zfh-2 requires Notch activity but zfh-2 is necessary, in turn, to activate Notch targets such as Enhancer of split and big brain. zfh-2 is controlled by the Drosophila activator protein 2 gene and regulates the late expression of tarsal-less. In the absence of zfh-2 many cells ectopically express the pro-apoptotic gene head involution defective, activate caspase-3 and are positive for acridine orange, indicating they undergo apoptosis. Our results demonstrate the key role of zfh-2 in the control of cell death and Notch signaling during leg development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号