首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
  2022年   1篇
  2014年   1篇
  2012年   3篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Lambs respond to vaccination against bacteria and viruses but have a poor immunological response to nematodes. Here we report that they are protected against the parasitic nematode Haemonchus contortus after vaccination with excretory/secretory (ES) glycoproteins using Alhydrogel as an adjuvant. Lambs immunized with ES in Alhydrogel and challenged with 300 L3 larvae/kg body weight had a reduction in cumulative egg output of 89% and an increased percentage protection of 54% compared with the adjuvant control group. Compared to the adjuvant dimethyl dioctadecyl ammonium bromide, Alhydrogel induced earlier onset and significantly higher ES- specific IgG, IgA, and IgE antibody responses. In all vaccinated groups a substantial proportion of the antibody response was directed against glycan epitopes, irrespective of the adjuvant used. In lambs vaccinated with ES in Alhydrogel but not in any other group a significant increase was found in antibody levels against the GalNAcbeta1,4 (Fucalpha1,3)GlcNAc (fucosylated LacdiNAc, LDNF) antigen, a carbohydrate antigen that is also involved in the host defense against the human parasite Schistosoma mansoni. In lambs the LDNF-specific response increased from the first immunization onward and was significantly higher in protected lambs. In addition, an isotype switch from LDNF-specific IgM to IgG was induced that correlated with protection. These data demonstrate that hyporesponsiveness of lambs to H. contortus can be overcome by vaccination with ES glycoproteins in a strong T-helper 2 type response-inducing aluminum adjuvant. This combination generated high and specific antiglycan antibody responses that may contribute to the vaccination-induced protection.  相似文献   
2.
The terminal modification of glycans by β4 addition of N-acetylgalactosamine to N-acetylglucosamine with formation of the N,N-diacetyllactosediamine (LacdiNAc) moiety has been well documented for a number of N-linked glycoproteins and peptides, like neurohormones. Much less is known about O-glycoproteins in this regard because only human zona pellucida glycoprotein 3 (ZP3) and bovine proopiomelanocortin were reported to be LacdiNAc-modified. In searching for mammalian proteins modified with O-linked LacdiNAc we identified six positive species among nine endogenous and recombinant O-glycoproteins, which were extracellular matrix, or matrix-related proteins. These are ZP3 and the five novel LacdiNAc-positive species ECM1, AMACO, nidogen-1, α-dystroglycan, and neurofascin. The mass spectrometric analyses revealed a core 2-based tetrasaccharide as the common structural basis of O-linked LacdiNAc that could be further modified, similar to the type 2 LacNAc termini, with fucose, sialic acid, or sulfate. Here, we provide structural evidence for a novel type of mucin-type O-glycans that is strictly specific for LacdiNAc termini: sugar phosphorylation with formation of GalNAcβ1-4(phospho-)GlcNAc. The structural details of the phosphatase-labile compound were elucidated by MS(2) analysis of tetralysine complexes and by MS(n) measurements of the permethylated glycan alditols. Phospho-LacdiNAc was detected in human HEK-293 as well as in mouse myoblast cells and in bovine brain tissue.  相似文献   
3.
The GalNAcbeta1,4GlcNAc (LacdiNAc or LDN) structure is a more common structural feature in invertebrate glycoconjugates when compared with the Galbeta1,4GlcNAc structure. Recently, beta1,4-N-acetylgalactosaminyltransferase (beta4GalNAcT) was identified in some invertebrates including Drosophila. However, the LDN structure has not been reported in Drosophila, and the biological function of LDN remains to be determined. In this study, we examined acceptor substrate specificity of Drosophila beta4GalNAcTA by using some N- and O-glycans on glycoproteins and neutral glycosphingolipids (GSLs). GalNAc was efficiently transferred toward N-glycans, O-glycans, and the arthro-series GSLs. Moreover, we showed that dbeta4GalNAcTA contributed to the synthesis of the LDN structure in vivo. The dbeta4GalNAcTA mRNA was highly expressed in the developmental and adult neuronal tissues. Thus, these results suggest that dbeta4GalNAcTA acts on the terminal GlcNAc residue of some glycans for the synthesis of LDN, and the LDN structure may play a role in the physiological or neuronal development of Drosophila.  相似文献   
4.
This work reveals new structural relationships in the complex process of the interaction between activation receptors of natural killer cells (rat NKR-P1, human CD69) and novel bivalent carbohydrate glycomimetics. The length, glycosylation pattern and linker structure of receptor ligands were examined with respect to their ability to precipitate the receptor protein from solution, which simulates the in vivo process of receptor aggregation during NK cell activation. It was found that di-LacdiNAc triazole compounds show optimal performance, reaching up to 100% precipitation of the present protein receptors, and achieving high immunostimulatory activities without any tendency to trigger activation-induced apoptosis. In the synthesis of the compounds tested, two enzymatic approaches were applied. Whereas a β-N-acetylhexosaminidase could only glycosylate one of the two acceptor sites available with yields below 10%, the Y284L mutant of human placental β1,4-galactosyltransferase-1 worked as a perfect synthetic tool, accomplishing even quantitative glycosylation at both acceptor sites and with absolute regioselectivity for the C-4 position. This work insinuates new directions for further ligand structure optimisation and demonstrates the strong synthetic potential of the mutant human placental β1,4-galactosyltransferase-1 in the synthesis of multivalent glycomimetics and glycomaterials.  相似文献   
5.
The disaccharide N,N′-di-N-acetyllactose diamine (LacdiNAc, GalNAcβ1–4GlcNAcβ) is found in a limited number of extracellular matrix glycoproteins and neuropeptide hormones indicating a protein-specific transfer of GalNAc by the glycosyltransferases β4GalNAc-T3/T4. Whereas previous studies have revealed evidence for peptide determinants as controlling elements in LacdiNAc biosynthesis, we report here on an entirely independent conformational control of GalNAc transfer by single TFF (Trefoil factor) domains as high stringency determinants. Human TFF2 was recombinantly expressed in HEK-293 cells as a wild type full-length probe (TFF2-Fl, containing TFF domains P1 and P2), as single P1 or P2 domain probes, as a series of Cys/Gly mutant forms with aberrant domain structures, and as a double point-mutated probe (T68Q/F59Q) lacking aromatic residues within a hydrophobic patch. The N-glycosylation probes were analyzed by mass spectrometry for their glycoprofiles. In agreement with natural gastric TFF2, the recombinant full-length and single domain probes expressed nearly exclusively fucosylated LacdiNAc on bi-antennary complex-type chains indicating that a single TFF domain was sufficient to induce transfer of this modification. Contrasting to this, the Cys/Gly mutants showed strongly reduced LacdiNAc levels and instead preponderant LacNAc expression. The probe with point mutations of two highly conserved aromatic residues in loop 3 (T68Q/F59Q) revealed that these are essential determinant components, as the probe lacked LacdiNAc expression. The structural features of the LacdiNAc-inducing determinant on human TFF2 are discussed on the basis of crystal structures of porcine TFF2, and a series of extracellular matrix-related LacdiNAc-positive glycoproteins detected as novel candidate proteins in the secretome of HEK-293 cells.  相似文献   
6.
Specificity of DC-SIGN for mannose- and fucose-containing glycans   总被引:1,自引:0,他引:1  
The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans.  相似文献   
7.
Millions of people worldwide are infected with filarial nematodes, responsible for lymphatic filariasis (LF) and other diseases causing chronic disablement. Elimination programs have resulted in a substantial reduction of the rate of infection in certain areas creating a need for improved diagnostic tools to establish robust population surveillance and avoid LF resurgence. Glycans from parasitic helminths are emerging as potential antigens for use in diagnostic assays. However, despite its crucial role in host–parasite interactions, filarial glycosylation is still largely, structurally, and functionally uncharacterized. Therefore, we investigated the glycan repertoire of the filarial nematode Brugia malayi. Glycosphingolipid and N-linked glycans were extracted from several life-stages using enzymatic release and characterized using a combination of MALDI-TOF-MS and glycan sequencing techniques. Next, glycans were purified by HPLC and printed onto microarrays to assess the host anti-glycan antibody response. Comprehensive glycomic analysis of B. malayi revealed the presence of several putative antigenic motifs such as phosphorylcholine and terminal glucuronic acid. Glycan microarray screening showed a recognition of most B. malayi glycans by immunoglobulins from rhesus macaques at different time points after infection, which permitted the characterization of the dynamics of anti-glycan immunoglobulin G and M during the establishment of brugian filariasis. A significant level of IgG binding to the parasite glycans was also detected in infected human plasma, while IgG binding to glycans decreased after anthelmintic treatment. Altogether, our work identifies B. malayi glycan antigens and reveals antibody responses from the host that could be exploited as potential markers for LF.  相似文献   
8.
Novel chimeric lacdiNAc (GalNAc(β1-4)GlcNAc) synthase (c-LacdiNAcS) was generated by gene fusion of α-lactalbumin (α-LA) and β1,4-galactosyltransferase 1 (β1,4-GalT1). c-LacdiNAcS was expressed in Lec8 Chinese hamster ovary (Lec8 CHO) cells and exhibited N-acetylgalactosaminyltransferase (GalNAcT) activity in the absence of exogenous α-LA as well as other glycosyltransferase activities including lactose synthase (LacS), and β1,4-GalT. These glycosyltransferase activities of c-LacdiNAcS were compared to those activities induced in LacS system under the co-presence of bovine β1,4-GalT1 and α-LA, indicating that each domain of α-LA and β1,4-GalT1 on c-LacdiNAcS is not only folding correctly, but also interacting together. Furthermore, c-LacdiNAcS was found to be auto-lacdiNAcylated and can synthesize lacdiNAc structures on cellular glycoproteins, demonstrating that GalNAcT activity of c-LacdiNAcS is functional in Lec8 CHO cells.  相似文献   
9.
10.
Determining the exact nature of N-glycosylation in Caenorhabditis elegans, a nematode worm and genetic model organism, has proved to have been an unexpected challenge in recent years; a wide range of modifications of its N-linked oligosaccharides have been proposed on the basis of structural and genomic analysis. Particularly mass spectrometric studies by a number of groups, as well as the characterisation of recombinant enzymes, have highlighted those aspects of N-glycosylation that are conserved in animals, those which are seemingly unique to this species and those which are shared with parasitic nematodes. These data, of importance for therapeutic developments, are reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号