首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
  2019年   1篇
  2012年   3篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   1篇
  1999年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
In this study, we compared the cytotoxic effects of natural conjugated linolenic acids (CLnAs) on human adenocarcinoma cells (DLD-1) in vitro, with the goal of finding CLnA isomers with strong cytotoxic effects. The antitumor effect of the CLnA with the strongest cytotoxic effect was then examined in mice. The results showed that all CLnA isomers have strong cytotoxic effects on DLD-1 cells, with jacaric acid (JA) having the strongest effect. Examination of the mechanism of cell death showed that CLnAs induce apoptosis in DLD-1 cells via lipid peroxidation. The intracellular levels of incorporated CLnAs were measured to examine the reason for differences in cytotoxic effects. These results showed that JA was taken into cells efficiently. Collectively, these results suggest that the cytotoxic effect of CLnAs is dependent on intracellular incorporation and induction of apoptosis via lipid peroxidation. JA also had a strong preventive antitumor effect in vivo in nude mice into which DLD-1 cells were transplanted. These results suggest that JA can be used as a dietary constituent for prevention of cancer.  相似文献   
2.
Eighty years ago, Burr and Burr, introduced for the first time the concept of essential fatty acids. Now is very well known that requirements for polyunsaturated fatty acids PUFAs can not be met by de novo metabolic processes within mammalian tissues. Animals are absolutely dependent on plants for providing the two major precursors of the n-6 and n-3 fatty acids, C18:2n-6; linoleic and C18:3n-3; α-linolenic acids. In animal tissues these precursors are transformed to fatty acids containing three to six double bonds. During the last four decades the interest in polyunsaturated fatty acids has augmented manifolds, and the number of published studies is rising each year. The current impetus for this interest has been mainly the observation that PUFAs and their metabolites have several physiological roles including: energy provision, membrane structure, cell signaling and regulation of gene expression. In addition the observation that PUFAs are targets of lipid peroxidation opens a new important area of investigation. Melatonin, the main secretory product of the pineal gland, efficiently scavenges both the hydroxyl and peroxyl radicals counteracting lipid peroxidation in biological membranes. In addition the two key pineal biochemical functions, lipoxygenation and melatonin synthesis may be synergistically regulated by the status of n-3 essential fatty acids. At the retina level, free radicals may preferentially react with the membrane polyunsaturated fatty acids leading to the release of lipoperoxide radicals. These lipoperoxides can induce oxidative stress linked to membrane lysis, damage to neuronal membranes may be related to alteration of visual function.  相似文献   
3.
Di-μ-azido-bis[azido(2-aminopyridine)aquo]dicopper(II), [Cu(2-ampy)(N3)2(H2O)]2, was synthesized and characterized by X-ray crystallography. The crystals are triclinic, space group P1, with a = 7.142(1), b = 7.812(1), c = 9.727(1) Å, a = 96.52(1), β = 95.52(1), γ = 113.47(1)°, and Z = 1. The structure was refined to RF = 0.030 for 1960 observed MoKα diffractometer data. The dimeric molecule, which possesses a crystallographic inversion center, contains both terminal and μ(1)-bridging azido groups. Each copper(II) atom is further coordinated by a 2-aminopyridine ligand (via its ring N atom) and a water molecule to give a distorted square pyramid, with the metal atom raised by 0.17 Å above the N4 basal plane [CuN (ring) = 2.001(2), CuN (azide) = 1.962(3)–2.018(2) Å] towards the apical aquo ligand [CuO = 2.371(2) Å]. Each water molecule forms an intramolecular O?HN (amine) acceptor hydrogen bond, and is linked by two OH?N (terminal azide) intermolecular donor hydrogen bonds to adjacent dimeric complexes to yield a layer structure parallel to (001). Infrared and electronic spectral data are presented and discussed.  相似文献   
4.
Antioxidants are compounds that can delay or inhibit lipid oxidation. The peroxidation of linoleic acid (LA) in the absence and presence of Cu(II) ion–ascorbate combinations was investigated in aerated and incubated emulsions at 37 °C and pH 7. LA peroxidation induced by copper(II)–ascorbic acid system followed first order kinetics with respect to hydroperoxides concentration. The extent of copper-initiated peroxide production in a LA system assayed by ferric thiocyanate method was used to determine possible antioxidant and prooxidant activities of the added flavonoids. The effects of three different flavonoids of similar structure, i.e. quercetin (QR), morin (MR) and catechin (CT), as potential antioxidant protectors were studied in the selected peroxidation system. The inhibitive order of flavonoids in the protection of LA peroxidation was: morin > catechin ≥ quercetin, i.e. agreeing with that of formal reduction potentials versus NHE at pH 7, i.e. 0.60, 0.57 and 0.33 V for MR, CT, and QR, respectively. Morin showed antioxidant effect at all concentrations whereas catechin and quercetin showed both antioxidant and prooxidant effects depending on their concentrations. The structural requirements for antioxidant activity in flavonoids interestingly coincide with those for Cu(II)-induced prooxidant activity, because as the reducing power of a flavonoid increases, Cu(II)–Cu(I) reduction is facilitated that may end up with the production of reactive species. The findings of this study were evaluated in the light of structure–activity relationships of flavonoids, and the results are believed to be useful to better understand the actual conditions where flavonoids may act as prooxidants in the preservation of heterogeneous food samples containing traces of transition metal ions.  相似文献   
5.
BackgroundUnder conditions of oxidative stress, cholesterol aggregates into discrete membrane bilayer domains that precipitate the formation of extracellular crystals, a feature of advanced atheroma in cardiovascular disease. Therapeutic interventions using membrane-directed antioxidants, such as polyphenolic esters, may reduce cholesterol domains and crystal formation. In this study, the effects of rosmarinic acid (RC0) and rosmarinic esters, with alkyl chain lengths ranging from 4 to 16?carbons (RC4-RC16), on membrane lipid oxidation and cholesterol domain formation were investigated.MethodsModel membranes were prepared with 1,2-dilinoleoyl-sn-glycero-3-phosphocholine and cholesterol at different cholesterol-to-phospholipid mole ratios (0.3:1, 0.9:1, and 1.2:1), in the absence or presence of each molecule and exposed to 72 h of oxidation. Changes in lipid hydroperoxide (LOOH) and cholesterol domain formation were measured using iodometric and small angle x-ray diffraction approaches, respectively.ResultsRosmarinic acid and its esters had differential effects on LOOH formation based on alkyl chain length. RC8 exhibited the greatest antioxidant effect, reducing LOOH levels by 82%, and inhibited cholesterol domain formation. By contrast, RC0 and RC16 failed to inhibit either LOOH formation or cholesterol domain formation.ConclusionThese data indicate that the membrane antioxidant and cholesterol domain inhibition activities of rosmarinic acid esters are dependent, nonlinearly, on alkyl chain length. The mechanism for this effect is attributed to the influence of alkyl chain length on the optimal depth of the polyphenols into the lipid bilayer for trapping free radicals.General significanceThese findings provide insight into novel atheroprotective benefits of polyphenol esters that are dependent on their membrane location.  相似文献   
6.
StAR family proteins, including StarD4, play a key role in steroidogenesis by transporting cholesterol (Ch) into mitochondria for conversion to pregnenolone. Using a model system consisting of peroxidized cholesterol (7α-OOH)-containing liposomes as donors, we showed that human recombinant StarD4 accelerates 7α-OOH transfer to isolated liver mitochondria, and to a greater extent than Ch transfer. StarD4 had no effect on transfer of non-oxidized or peroxidized phosphatidylcholine, consistent with sterol ring specificity. StarD4-accelerated 7α-OOH transfer to mitochondria resulted in greater susceptibility to free radical lipid peroxidation and loss of membrane potential than in a non-StarD4 control. The novel implication of these findings is that in oxidative stress states, inappropriate StAR-mediated trafficking of peroxidized Ch in steroidogenic tissues could result in damage and dysfunction selectively targeted to mitochondria.  相似文献   
7.
In this paper, we present a study about the influence of the porphyrin metal center and meso ligands on the biological effects of meso-tetrakis porphyrins. Different from the cationic meso-tetrakis 4-N-methyl pyridinium (Mn(III)TMPyP), the anionic Mn(III) meso-tetrakis (para-sulfonatophenyl) porphyrin (Mn(III)TPPS4) exhibited no protector effect against Fe(citrate)-induced lipid oxidation. Mn(III)TPPS4 did not protect mitochondria against endogenous hydrogen peroxide and only delayed the swelling caused by tert-BuOOH and Ca2+. Fe(III)TPPS4 exacerbated the effect of the tert-BuOOH, and both porphyrins did not significantly affect Fe(II)citrate-induced swelling. Consistently, Fe(III)TPPS4 predominantly promotes the homolytic cleavage of peroxides and exhibits catalytic efficiency ten-fold higher than Mn(III)TPPS4. For Mn(III)TPPS4, the microenvironment of rat liver mitochondria favors the heterolytic cleavage of peroxides and increases the catalytic efficiency of the manganese porphyrin due to the availability of axial ligands for the metal center and reducing agents such as glutathione (GSH) and proteins necessary for Compound II (oxomanganese IV) recycling to the initial Mn(III) form. The use of thiol reducing agents for the recycling of Mn(III)TPPS4 leads to GSH depletion and protein oxidation and consequent damages in the organelle.  相似文献   
8.
9.
The presence and progression of numerous diseases have been linked to deficiencies in antioxidant systems. The relationships between single nucleotide polymorphisms (SNPs) arising from specific antioxidant enzymes and diseases associated with elevated oxidative stress have been studied with the rationale that they may be useful in screening for diseases. The purpose of this narrative review is to analyse evidence from these studies. The antioxidant enzyme SNPs selected for analysis are based on those most frequently investigated in relation to diseases in humans: superoxide dismutase (SOD2) Ala16Val (80 studies), glutathione peroxidise (GPx1) Pro197Leu (24 studies) and catalase C-262T (22 studies). Although the majority of evidence supports associations between the SOD2 Ala16Val SNP and diseases such as breast, prostate and lung cancers, diabetes and cardiovascular disease, the presence of the SOD2 Ala16Val SNP confers only a small, clinically insignificant reduction (if any) in the risk of these diseases. Other diseases such as bladder cancer, liver disease, nervous system pathologies and asthma have not been consistently related to this SOD SNP genotype. The GPx1 Pro197Leu and catalase C-262T SNP genotypes have been associated with breast cancer, but only in a small number of studies. Thus, currently available evidence suggests antioxidant enzyme SNP genotypes are not useful for screening for diseases in humans.  相似文献   
10.
The biological benefits of certain carotenoids may be due to their potent antioxidant properties attributed to specific physico-chemical interactions with membranes. To test this hypothesis, we measured the effects of various carotenoids on rates of lipid peroxidation and correlated these findings with their membrane interactions, as determined by small angle X-ray diffraction approaches. The effects of the homochiral carotenoids (astaxanthin, zeaxanthin, lutein, β-carotene, lycopene) on lipid hydroperoxide (LOOH) generation were evaluated in membranes enriched with polyunsaturated fatty acids. Apolar carotenoids, such as lycopene and β-carotene, disordered the membrane bilayer and showed a potent pro-oxidant effect (> 85% increase in LOOH levels) while astaxanthin preserved membrane structure and exhibited significant antioxidant activity (40% decrease in LOOH levels). These findings indicate distinct effects of carotenoids on lipid peroxidation due to membrane structure changes. These contrasting effects of carotenoids on lipid peroxidation may explain differences in their biological activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号