首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
  国内免费   3篇
  31篇
  2018年   1篇
  2013年   5篇
  2011年   2篇
  2008年   4篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Twenty low-molecular-weight-glutenin subunit (LMW-GS) gene sequences from the D-genome from Aegilops crassa (2n = 4x = 28), Ae. cylindrica (2n = 4x = 28), Ae. tauschii (2n = 2x = 14) and Triticum aestivum (2n = 6x = 42) were obtained using five sets of specific allele primer pairs. Only the sequences of the first primer pair were complete coding sequences (cds) of LMW-GS, and had 305, 304, 306 and 305 LMW-m amino acid residues in Ae. crassa, Ae. cylindrica, Ae. tauschii and T. aestivum, respectively. The repetitive domain and repeat motif numbers of all LMW glutenin subunits showed eight conserved cysteine residues that lead to the same functional activity in different genome. Based on DNA and predicted protein sequences, phylogenetic trees for all sets of sequences were drawn. At the DNA level, the species closest to T. aestivum for the second, third, fourth and fifth set of sequences were Ae. cylindrica, Ae. tauschii and Ae. crassa, respectively. At the protein level, the species closest to T. aestivum based on the first, second and fifth set of sequences were Ae. cylindrica, Ae. crassa and Ae. crassa, respectively. For other sets of sequences, bread wheat proved to be a distinct species. The LMW-GS gene sequences have been recorded in the GenBank with accession numbers JQ726549–JQ726568JQ726549JQ726550JQ726551JQ726552JQ726553JQ726554JQ726555JQ726556JQ726557JQ726558JQ726559JQ726560JQ726561JQ726562JQ726563JQ726564JQ726565JQ726566JQ726567JQ726568.  相似文献   
2.
基因枪法转化小麦谷蛋白基因研究进展   总被引:1,自引:0,他引:1  
小麦面粉品质的优劣主要取决于麦谷蛋白多聚体结构的组成,谷蛋白多聚体由高分子量谷蛋白亚基(HMW-GS)、低分子量谷蛋白亚基(LMW-GS)和醇溶蛋白以二硫键相互交联构成,其数量和结构特征直接影响面团的粘弹性,所以通过基因工程方法转化优质谷蛋白基因,增加谷蛋白数量,改善谷蛋白多聚体结构组成,进而改良面粉品质的研究逐渐引起国内外的重视,并在近年来取得了重要进展。基因枪法是目前利用基因工程改良小麦品质的主要途径,自1992年以来已在多个研究室取得了较为瞩目的成果,显示了基因工程改良小麦品质的可能性及前景。综述了迄今为止国内外利用基因枪法转化谷蛋白基因改良小麦品质的研究进展,并在受体材料的选择等方面的研究现状作了较为详细的阐述。  相似文献   
3.
In order to exploit the evolution and find novel low-molecular-weight glutenin subunit(LMW-GS)for improvement of common wheat quality,thirteen variants from a somatic hybrid introgression line Ⅱ-12 between Triticum aestivum cv.Jinan 177(JN177)and Agropyron elongatum were characterized via genomic PCR.Four clones were pseudogenes because they contained an internal stop codon.The remaining nine variants contained intact open reading frames(ORFs).Sequence alignment indicates that the proteins deduced from the nine ORFs have similar primary structure with LMW-GS cloned from its parents previously.However,they have some unique modifications in the structures.For example,EU292737 contains not only an extra Cys residue in the C-terminal domain but also a long repetitive domain.Both EU159511 and EU292738 start their first Cys residue in the N-terminal repetitive domain,but not in the N-conserved domain traditionally.These structural alterations may have positive contributions to wheat flour quality.The results of phylogeny showed that most LMW-GS variances from Ⅱ-12 were homologous to those from parent JN 177 and other wheat lines.The reason for quick evolution of LMW-GS in Ⅱ-12 was discussed.  相似文献   
4.
小麦低分子量麦谷蛋白亚基与面团流变学特性关系的研究   总被引:8,自引:0,他引:8  
采用十二烷基硫酸钠-聚丙稀酰胺凝胶电泳(SDS-PAGE)分离方法,以牛血清蛋白(67kD)和卵清蛋白(43kD)为分子量标记,对甘肃河西灌区近几年选育的17个小麦品系以及大面积栽培的2个春小麦品种的低分子量麦谷蛋白亚基组成以及不同亚基对面团流变学特性(面团韧性P、延伸性L、面团筋力W)的影响进行分析。19个试验材料中共标记出从35.2~60.5kD的LMW-GS共32条谱带;通过单因素方差分析(ANOVA)和逐步回归分析确定出对面团流变学特性P、L、W值影响显著的7个LMW-GS,分子量由高到低为:52.7kD、52kD、49.3kD、46.7kD、44.8kD、44.2kD、35.2kD。其中35.2kD和46.7kD亚基能显著地增加面团P值,44.8kD亚基能显著地降低面团P值;44.2kD和49.3kD亚基显著增加面团L值,52.7kD亚基降低面团L值;44.8kD、52.7kD亚基能显著降低面团的W值,52.0kD和46.7kD亚基能显著提高面团W值。  相似文献   
5.
Synthetic hexaploid wheats (2n=6x=42, AABBDD) involving genomes from Triticum turgidum (2n= 4x=28, AABB) and Aegilops tauschii (2n=2x=14, DD) have been produced as a means for introducing desirable characteristics into bread wheat. In the present work we describe the genetic variability present at the Glu-D t 1 and Glu-D t 3 loci, encoding high- (HMW) and low-molecular-weight (LMW) glutenin subunits respectively, derived from Ae. tauschii, using electrophoretic and chromatographic methods, in a collection of synthetic hexaploid wheats. A wide variation both in mobility and surface hydrophobicity of HMW glutenin subunits was observed between different accessions of Ae. tauschii used in the production of the synthetic hexaploids. A combination of electrophoretic and chromatographic methods improves the identification of HMW glutenin subunits; in fact subunits with identical apparent mobility were revealed to have a different surface hydrophobicity by reversed-phase high performance liquid chromatography. None of the Dx5t subunits present in Ae. tauschii showed the presence of the extra cysteine residue found in the HMW glutenin subunit Dx5 of Triticum aestivum, as revealed by selective amplification with polymerase chain reaction (PCR). The wide variability and the high number of subunits encoded by the Glu-D t 3 locus suggests that Ae. tauschii may be a rich source for enhancing the genetic variability of glutenin subunits in bread wheat and improving bread-making properties. Received: 3 March 2001 / Accepted: 23 March 2001  相似文献   
6.
Post translational modifications of a seed storage protein, barley γ3-hordein, were determined using immunochemical and mass spectrometry methods. IgE reactivity towards this protein was measured using sera from patients diagnosed with allergies to wheat. N-glycosylation was found at an atypical Asn-Leu-Cys site. The observed glycan contains xylose. This indicates that at least some γ3-hordein molecules trafficked through the Golgi apparatus. Disulfide bridges in native γ3-hordein were almost the same as those found in wheat γ46-gliadin, except the bridge involving the cysteine included in the glycosylation site. IgE reacted more strongly towards the recombinant than the natural γ3-hordein protein. IgE binding to γ3-hordein increased when the protein sample was reduced. Glycosylation and disulfide bridges therefore decrease epitope accessibility. Thus the IgE from patients sensitized to wheat cross-react with γ3-hordein due to sequence homology with wheat allergens rather than through shared carbohydrate determinants.  相似文献   
7.
8.
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> − 700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5′-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.  相似文献   
9.
High-molecular-weight glutenin subunits (HMW-GSs) are of considerable interest, because they play a crucial role in determining dough viscoelastic properties and end-use quality of wheat flour. In this paper, ChAy/Bx, a novel chimeric HMW-GS gene from Triticum turgidum ssp. dicoccoides (AABB, 2n = 4x = 28) accession D129, was isolated and characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis revealed that the electrophoretic mobility of the glutenin subunit encoded by ChAy/Bx was slightly faster than that of 1Dy12. The complete ORF of ChAy/Bx contained 1671 bp encoding a deduced polypeptide of 555 amino acid residues (or 534 amino acid residues for the mature protein), making it the smallest HMW-GS gene known from Triticum species. Sequence analysis showed that ChAy/Bx was neither a conventional x-type nor a conventional y-type subunit gene, but a novel chimeric gene. Its first 1305 nt sequence was highly homologous with the corresponding sequence of 1Ay type genes, while its final 366 nt sequence was highly homologous with the corresponding sequence of 1Bx type genes. The mature ChAy/Bx protein consisted of the N-terminus of 1Ay type subunit (the first 414 amino acid residues) and the C-terminus of 1Bx type subunit (the final 120 amino acid residues). Secondary structure prediction showed that ChAy/Bx contained some domains of 1Ay subunit and some domains of 1Bx subunit. The special structure of this HMW glutenin chimera ChAy/Bx subunit might have unique effects on the end-use quality of wheat flour. Here we propose that homoeologous recombination might be a novel pathway for allelic variation or molecular evolution of HMW-GSs.  相似文献   
10.
Five crosses were made, using a set of New Zealand wheat cultivars, to measure the effect of glutenin allele differences on baking quality parameters. The alleles involved were: Glu-A1 (2*, 1 and n), Glu-D1 (5+10, 2+12), Glu-A3 (c, d and e), Glu-B3 (Sec-12, Sec-13, b and g), Glu-D3 (a and b). The allelic variation of F3 individual plants was identified by SDS-PAGE, and plants with the same HMW-GS and LMW-GS patterns were grouped. Quality parameters were then measured on the grouped F4 bulks. Quality parameters measured for this study were wholemeal flour protein content (WFP), grain hardness (HAR), SDS sedimentation volume (SED), Pelshenke time (PEL), mid-line peak value (MPV) and the mid-line peak time (MPT) of a mixograph. The results showed there were significant quality differences within most populations associated with the possession of a particular allele, reaching magnitudes of up to 42% for the range between populations. Most glutenin allelic comparisons showed significant differences for at least one of the resultant measured quality parameters. Allelic differences of Glu-A1 significantly influenced all characters except MPT, with the null allele apparently inferior; possession of 5+10 at Glu-D1 significantly increased Pelshenke time and SED volumes relative to allele 2+12; WFP, SED and MPV were significantly affected by the Glu-A3 alleles tested. Glu-B3 alleles significantly affected all characters except hardness and the Glu-D3 alleles tested significantly affected all characters other than hardness and SDS sedimentation volume. Received: 8 June 1999 / Accepted: 25 July 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号