首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  2009年   2篇
  2008年   2篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
As the receptor on the platelet surface for von Willebrand factor, glycoprotein (GP) Ib-IX complex is critically involved in hemostasis and thrombosis. How the complex is assembled from GP Ibα, GP Ibβ and GP IX subunits, all of which are type I transmembrane proteins, is not entirely clear. Genetic and mutational analyses have identified the transmembrane (TM) domains of these subunits as active participants in assembly of the complex. In this study, peptides containing the transmembrane domain of each subunit have been produced and their interaction with one another characterized. Only the Ibβ TM sequence, but not the Ibα and IX counterparts, can form homo-oligomers in SDS-PAGE and TOXCAT assays. Following up on our earlier observation that a Ibβ-Ibα-Ibβ peptide complex (αβ2) linked through native juxtamembrane disulfide bonds could be produced from isolated Ibα and Ibβ TM peptides in detergent micelles, we show here that addition of the IX TM peptide facilitates formation of the native αβ2 complex, reproducing the same effect by the IX subunit in cells expressing the GP Ib-IX complex. Specific fluorescence resonance energy transfer was observed between donor-labeled αβ2 peptide complex and acceptor-conjugated IX TM peptide in micelles. Finally, the mutation D135K in the IX TM peptide could hamper both the formation of the αβ2 complex and the energy transfer, consistent with its reported effect in the full-length complex. Overall, our results have demonstrated directly the native-like heteromeric interaction among the isolated Ibα, Ibβ and IX TM peptides, which provides support for the four-helix bundle model of the TM domains in the GP Ib-IX complex and paves the way for further structural analysis. The methods developed in this study may be applicable to other studies of heteromeric interaction among multiple TM helices.  相似文献   
2.
The interfacial properties of the negatively charged dimyristoyl-phosphatidylglycerol (DMPG) and the zwitterionic dimyristoyl-phosphatidylcholine (DMPC) vesicles mixed with the fusion inhibitor lysomyristoylphosphatidylcholine (LMPC) are investigated by electron paramagnetic resonance (EPR). At 35 °C, addition of 20 mol% of LMPC to the DMPG vesicles increases the effective concentration of water in the interfacial layer of DMPG vesicles from 19.3 M to 27.7 M, whereas in the case of mixed DMPC-LMPC vesicle the effective water concentration in the interfacial layer of DMPC vesicles only changes from 15.1 M to 18.4 M. The hydrogen bonding structure in both mixed DMPG-LMPC and mixed DMPC-LMPC vesicles becomes stronger with an increasing fraction of LMPC in the vesicles. The average area per phospholipid decreases in mixed DMPC-LMPC vesicles, while it increases in mixed DMPG-LMPC vesicles as the proportion of LMPC in the vesicle increases. The inhibitory nature of LMPC in both vesicle and biological fusion comes from the increase in surface hydration, as well as from the dynamic cone shape of LMPC in the phospholipid bilayer.  相似文献   
3.
The twin arginine translocation (Tat) system can transport fully folded proteins, including their cofactors, across bacterial and thylakoid membranes. The Tat system of Bacillus subtilis that serves to export the phosphodiesterase (PhoD) consists of only two membrane proteins, TatAd and TatCd. The larger component TatCd has a molecular weight of 28 kDa and several membrane-spanning segments. This protein has been expressed in Escherichia coli and purified in sufficient amounts for structure analysis by circular dichroism (CD) and NMR spectroscopy. TatCd was reconstituted in detergent micelles and in lipid bilayers for CD analysis in solution and in macroscopically oriented samples, to examine the stability of the protein. Suitable protocols and model membrane systems have been established, by which TatCd maintains the level of helicity close to theoretically predicted, and its transmembrane alignment could been verified.  相似文献   
4.
Rhomboids comprise a family of intramembrane serine proteases that catalyze the cleavage of transmembrane segments within the lipid membrane to achieve a wide range of biological functions. A subset of bacterial rhomboids possesses an N-terminal cytosolic domain that appears to enhance proteolytic activity via an unknown mechanism. Structural analysis of a full-length rhomboid would provide new insights into this mechanism, an objective that solution NMR has the potential to realize. For this purpose we purified the rhomboid from Pseudomonas aeruginosa in a range of membrane-mimetic media, evaluated its functional status in vitro and investigated the NMR spectroscopic properties of these samples. In general, NMR signals could only be observed from the cytosolic domain, and only in detergents that did not support rhomboid activity. In contrast, media that supported rhomboid function did not show these resonances, suggesting an association between the cytosolic domain and the protein-detergent complex. Investigations into the ability of the isolated cytosolic domain to bind detergent micelles revealed a denaturing interaction, whereas no interaction occurred with micelles that supported rhomboid activity. The cytosolic domain also did not show any tendency to interact with lipid bilayers found in small bicelles or vesicles made from Escherichia coli phospholipid extracts. Based on these data we propose that the cytosolic domain does not interact with the lipid membrane, but instead enhances rhomboid activity through interactions with some other part of the rhomboid, such as the catalytic core domain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号