首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Long-range coupling between distant functional elements of proteins may rely on allosteric communication trajectories lying along the protein structure, as described in the case of the Shaker voltage-activated potassium (Kv) channel model allosteric system. Communication between the distant Kv channel activation and slow inactivation pore gates was suggested to be mediated by a network of local pairwise and higher-order interactions among the functionally unique residues that constitute the allosteric trajectory. The mechanism by which conformational changes propagate along the Kv channel allosteric trajectory to achieve pore opening, however, remains unclear. Such conformational changes may propagate in either a concerted or a sequential manner during the reaction coordinate of channel opening. Residue-level structural information on the transition state of channel gating is required to discriminate between these possibilities. Here, we combine patch-clamp electrophysiology recordings of Kv channel gating and analysis using linear free-energy relations, focusing on a select set of residues spanning the allosteric trajectory of the Kv channel pore. We show that all allosteric trajectory residues tested exhibit an open-like conformation in the transition state of channel opening, implying that coupling interactions occur along the trajectory break in a concerted manner upon moving from the closed to the open state. Energetic coupling between the Kv channel gates thus occurs in a concerted fashion in both the spatial and the temporal dimensions, strengthening the notion that such trajectories correspond to pathways of mechanical deformation along which conformational changes propagate.  相似文献   
2.
The anomeric effect of 2-substituted 1,4-dioxane derivatives was calculated and compared with the values for substituted cyclohexane. The bond lengths, bond angles, torsion angles, and relative energies of axial and equatorial conformers of 2-substituted 1,4-dioxanes were calculated by the second-order Møller–Plesset (MP2), density functional theory (DFT/B3LYP), and Hartree–Fock (HF) methods using 6-31G basis set. The energy differences between the axial and equatorial conformers, endo and exo-anomeric effects, repulsive non-bond and H-bonding interactions were investigated. A linear free energy relationship (LFER) between calculated (MP2/6-31G) anomeric effect and inductive substituent constants (σI) was obtained for 2-substituted-1,4-dioxanes (slope = 6.19 and r2 = 0.967). The calculated energy differences indicate lower equatorial orientation for 2-substituted-1,4-dioxanes compared to the 2-substituted-tetrahydropyrans. The contribution of resonance, hyperconjugation, inductive, steric, hydrogen bonding, electrostatic interaction, and level of theory influences the anomeric effect.  相似文献   
3.
Abnormal replication of DNA is associated with many important human diseases, most notably viral infections and neoplasms. Existing approaches to chemotherapeutics for diseases associated with dysfunctional DNA replication classically involve nucleoside analogues that inhibit polymerase activity due to modification in the nucleobase and/or ribose moieties. These compounds must undergo multiple phosphorylation steps in vivo, converting them into triphosphosphates, in order to inhibit their targeted DNA polymerase. Nucleotide monophosphonates enable bypassing the initial phosphorylation step at the cost of decreased bioavailability. Relatively little attention has been paid to higher nucleotides (corresponding to the natural di- and triphosphate DNA polymerase substrates) as drug platforms due to their expected poor deliverability. However, a better understanding of DNA polymerase mechanism and fidelity dependence on the triphosphate moiety is beginning to emerge, aided by systematic incorporation into this group of substituted methylenebisphosphonate probes. Meanwhile, other bridging, as well as non-bridging, modifications have revealed intriguing possibilities for new drug design. We briefly survey some of this recent work, and argue that the potential of nucleotide-based drugs, and intriguing preliminary progress in this area, warrant acceptance of the challenges that they present with respect to bioavailability and metabolic stability.  相似文献   
4.

Background

Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol.

Scope of review

The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane.

Major conclusions

Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe–chelate carrier, and finally a member of the larger family of periplasmic binding proteins.

General significance

An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.  相似文献   
5.
The reactivity of triesters is discussed in the general context of phosphate transfer, as usually studied for the reactions of mono- and diesters. Systematic work has typically concentrated on the Linear Free Energy Relationships measuring the dependence of reactivity on the nucleophile and the leaving group, but new results indicate that it can depend equally strongly on the two non-leaving (sometimes known as spectator) groups. This conclusion is supported by first results from theoretical calculations: which also predict that a two-step mechanism can be favored over a concerted SN2(P) mechanism even for reactions involving leaving groups as good as p-nitrophenolate. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号