首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
  国内免费   1篇
  2023年   1篇
  2018年   2篇
  2017年   1篇
  2007年   1篇
  2006年   1篇
  2004年   2篇
  1997年   1篇
排序方式: 共有9条查询结果,搜索用时 21 毫秒
1
1.
Enteropathogenic Escherichia coli (EPEC) are Gram (-) bacteria responsible for widespread illness in the form of diarrhea. EPEC cells attach to the intestinal epithelium using a Type III secretion system common to many Gram (-) bacteria. The translocated intimin receptor (TIR) is the first protein secreted through the EPEC secretion complex, and is absolutely required for pathogenesis. It inserts into the intestinal epithelium, serving as an anchor responsible for the attachment of EPEC to the host epithelial cell. Intimin is a transmembrane protein displayed on the EPEC cell surface with an extracellular domain that binds TIR. Observation of a TIR-TIR dimer in the X-ray co-crystal structure of the extracellular domains of intimin and TIR raised the question of how these protein domains interact and function in solution. Herein we report that the extracellular domain of TIR exists in a folded and active monomeric state in solution, as confirmed by analytical ultracentrifugation, analytical size-exclusion HPLC, isothermal titration calorimetry, and surface plasmon resonance.  相似文献   
2.
断奶仔猪源大肠杆菌LEE及HPI毒力岛的检测   总被引:9,自引:0,他引:9  
应用Duplex_PCR方法,对240株断奶仔猪源大肠杆菌分离株的LEE毒力岛的eaeA基因和耶尔森菌强毒力岛核心区的irp2基因进行了检测,并对HPI毒力岛的fyuA基因及其在大肠杆菌染色体中的插入位置进行了分析,以及随机选取部分PCR产物进行了克隆和序列分析。结果表明:其中29株(12.08%)为LEE HPI ,39株(16.25%)为LEE ,11株(4.58%)为HPI ;另外还发现:不同病例来源的分离株之间,两种毒力岛的携带率不同;在断奶仔猪腹泻源分离株中,29株(20.71%)为LEE HPI ,22株(15.71%)为LEE ,9株(6.43%)为HPI ;断奶仔猪水肿病源分离株中,仅5株(6.58%)为LEE ,2株(2.63%)为HPI ,未发现LEE HPI 菌株;断奶仔猪水肿病并发腹泻源分离株中,仅12株(50%)为LEE ,未发现HPI 及LEE HPI 菌株。本实验克隆的eaeA(425bp)与已发表序列完全一致,irp2(280bp)f、yuA(948bp)、asn_tRNA_intB(1391bp)均与已发表的序列高度同源,同源性分别在98.2%、98.3%、95.8%以上;40株LEE HPI 或HPI 分离株中,29株(72.5%)为fyuA ,且其HPI毒力岛位于大肠杆菌染色体asn_tRNA位点。  相似文献   
3.
4.
EnterohemorrhagicEscherichia coli (EHEC) forms histological lesions termed attaching and effacing lesions (A/E lesions) on infected large intestine tissue. The major virulence factors involved in A/E lesions reside on a locus of enterocyte effacement (LEE), a pathogenicity island. The LEE comprises 41 specific open reading frames, of which most are organized in 5 major operons,LEE1,LEE2,LEE3,LEE4, andtir (LEE5). The expression of LEE genes is regulated in a complicated manner by environmental factors such as temperature, osmolarity, and quorum sensing. Current knowledge is that regulation is hierarchical: a pivotal positive regulator,ler, is first stimulated, which in turn activates the expression of other operons. Herein, we report on the presence of a negative regulation protein located within the LEE.L0044 is 372 bp in length and is located outside of the 5 major operons. An isogenicL0044 deletion mutant displayed loss of the repression phenotype and increased synthesis of several LEE proteins when bacteria were cultured under repressive conditions that disfavor expression of LEE proteins. Reciprocally,trans expression ofL0044 suppressed the expression of the LEE. Furthermore, mRNA ofler increased as a result of deletingL0044, and disruptingler in aL0044-deleted background reversed the loss of the repression phenotype. Thus,L0044 plays a role in regulating the expression of virulence genes in EHEC by modulating the activation ofler.  相似文献   
5.
A series of novel hybrid structure derivatives, containing both LEE011 and Cabozantinib pharmacophore, were designed, synthesized and evaluated. Surprisingly, a compound 4d was discovered that highly exhibited effective and selective activity of CDK9 inhibition with IC50 = 12 nM. It effectively induced apoptosis in breast and lung cancer cell lines at nanomolar level. Molecular docking of 4d to ATP binding site of CDK9 kinase demonstrated a new hydrogen bonding between F atom of 4-(3-fluorobenzyloxy) group and ASN116 residue, compared with the positive control, LEE011. The compound 4d could block the cell cycle both in G0/G1 and G2/M phase to prevent the proliferation and differentiation of cancer cells. Mice bared-breast cancer treated with compound 4d showed significant suppression of cancer with low toxicity. Taken together, this novel compound 4d could be a promising drug candidate for clinical application.  相似文献   
6.
Attaching and effacing Escherichia coli (AEEC) has been described as a cause of diarrhea in calves. The molecular pathogenesis of AEEC was mainly studied in human enteropathogenic E. coli strain E2348/69 in which the virulence correlated with the presence of a 35.4 kb pathogenesis island called LEE. We showed that several strains isolated from calves with diarrhea were able to produce attaching and effacing lesions in a rabbit ileal loop model and that they possess a pathogenesis island related to the LEE. Moreover, we showed that the LEE from bovine strains was inserted mainly at a different position in the chromosome compared to the human enteropathogenic E. coli strain E2348/69.  相似文献   
7.
Licorice has been used as an antitussive and expectorant herbal medicine for a long history. This work evaluated the activities of 14 major compounds and crude extracts of licorice, using the classical ammonia-induced cough model and phenol red secretion model in mice. Liquiritin apioside (1), liquiritin (2), and liquiritigenin (3) at 50?mg/kg (i.g.) could significantly decrease cough frequency by 30–78% (p?<?.01). The antitussive effects could be partially antagonized by the pretreatment of methysergide or glibenclamide, but not naloxone. Moreover, compounds 13 showed potent expectorant activities after 3?days treatment (p?<?.05). The water and ethanol extracts of licorice, which contain abundant 1 and 2, could decrease cough frequency at 200?mg/kg by 25–59% (p?<?.05), and enhance the phenol red secretion (p?<?.05), while the ethyl acetate extract showed little effect. These results indicate liquiritin apioside and liquiritin are the major antitussive and expectorant compounds of licorice. Their antitussive effects depend on both peripheral and central mechanisms.  相似文献   
8.
Shiga toxin-producing Escherichia coli (STEC), especially of serotype O157:H7, cause a zoonotic food or waterborne enteric illness that is often associated with large epidemic outbreaks as well as the hemolytic uremic syndrome (HUS), the leading cause of acute renal failure in children. After ingestion, STEC colonize enterocytes of the large bowel with a characteristic attaching and effacing pathology, which is mediated by components of a type III secretion apparatus encoded by the LEE pathogenicity island. Shiga toxins are translocated from the bowel to the circularoty system and transported by leukocytes to capillary endothelial cells in renal glomeruli and other organs. After binding to the receptor globotriaosylceramide on target cells, the toxin is internalized by receptor-mediated endocytosis and interacts with the subcellular machinery to inhibit protein synthesis. This leads to pathophysiological changes that result in HUS. Specific therapeutic or preventive strategies are presently not available. The recent sequencing of genomes of two epidemic E. coli O157 strains has revealed novel pathogenicity islands which will likely provide new insights into the virulence of these bacteria.  相似文献   
9.
《Cell reports》2023,42(6):112638
  1. Download : Download high-res image (181KB)
  2. Download : Download full-size image
  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号