首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
  2020年   1篇
  2017年   1篇
  2010年   1篇
  2009年   1篇
排序方式: 共有4条查询结果,搜索用时 31 毫秒
1
1.
Analysis of biochemicals in single cells is important for understanding cell metabolism, cell cycle, adaptation, disease states, etc. Even the same cell types exhibit heterogeneous biochemical makeup depending on their physiological conditions and interactions with the environment. Conventional methods of mass spectrometry (MS) used for the analysis of biomolecules in single cells rely on extensive sample preparation. Removing the cells from their natural environment and extensive sample processing could lead to changes in the cellular composition. Ambient ionization methods enable the analysis of samples in their native environment and without extensive sample preparation.1 The techniques based on the mid infrared (mid-IR) laser ablation of biological materials at 2.94 μm wavelength utilize the sudden excitation of water that results in phase explosion.2 Ambient ionization techniques based on mid-IR laser radiation, such as laser ablation electrospray ionization (LAESI) and atmospheric pressure infrared matrix-assisted laser desorption ionization (AP IR-MALDI), have successfully demonstrated the ability to directly analyze water-rich tissues and biofluids at atmospheric pressure.3-11 In LAESI the mid-IR laser ablation plume that mostly consists of neutral particulate matter from the sample coalesces with highly charged electrospray droplets to produce ions. Recently, mid-IR ablation of single cells was performed by delivering the mid-IR radiation through an etched fiber. The plume generated from this ablation was postionized by an electrospray enabling the analysis of diverse metabolites in single cells by LAESI-MS.12 This article describes the detailed protocol for single cell analysis using LAESI-MS. The presented video demonstrates the analysis of a single epidermal cell from the skin of an Allium cepa bulb. The schematic of the system is shown in Figure 1. A representative example of single cell ablation and a LAESI mass spectrum from the cell are provided in Figure 2.  相似文献   
2.
The neuromuscular junction (NMJ), where a motor neuron intercepts and activates a muscle fiber, is a highly versatile and complex subcellular region. Genomic and proteomic approaches using the large (>1 kg) electric organ of Torpedo californica have helped advancing our understanding of this minute (30–50 μm) electric synapse. However, the majority of these studies have focused on mRNA and proteins, therefore neglecting small signaling molecules involved in muscle-nerve ‘dialogue’. We developed a novel technique, mid-infrared laser ablation electrospray ionization (LAESI) mass spectrometry (MS), with the potential of detecting a diversity of small signaling molecules in vitro. LAESI uses the native water in the tissue as the matrix to couple the laser pulse energy into the target for the ablation process and enables its direct analysis essentially without sample preparation. Here, we report the detection of metabolites from the untreated frozen tissue of the Torpedo electric organ with LAESI MS at atmospheric pressure. A total of 24 metabolites were identified by accurate mass measurements, natural isotope patterns, and tandem mass spectrometry. Most of the identified metabolites were related to the cholinergic function of the electric synapse (acetylcholine and choline), fatty acid metabolism and acetyl transfer (carnitine and acetylcarnitine), the mitigation of osmotic stress (betaine and trimethylamine N-oxide), and energy production (creatine and creatinine). The biosynthetic precursors of these metabolites and their expected degradation products were also detected indicating that LAESI MS is well suited for tissue metabolomics with the ultimate goal of imaging and in vivo studies. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
3.
Technologies enabling in situ metabolic profiling of living plant systems are invaluable for understanding physiological processes and could be used for rapid phenotypic screening (e.g., to produce plants with superior biological nitrogen‐fixing ability). The symbiotic interaction between legumes and nitrogen‐fixing soil bacteria results in a specialized plant organ (i.e., root nodule) where the exchange of nutrients between host and endosymbiont occurs. Laser‐ablation electrospray ionization mass spectrometry (LAESI‐MS) is a method that can be performed under ambient conditions requiring minimal sample preparation. Here, we employed LAESI‐MS to explore the well characterized symbiosis between soybean (Glycine max L. Merr.) and its compatible symbiont, Bradyrhizobium japonicum. The utilization of ion mobility separation (IMS) improved the molecular coverage, selectivity, and identification of the detected biomolecules. Specifically, incorporation of IMS resulted in an increase of 153 differentially abundant spectral features in the nodule samples. The data presented demonstrate the advantages of using LAESI–IMS–MS for the rapid analysis of intact root nodules, uninfected root segments, and free‐living rhizobia. Untargeted pathway analysis revealed several metabolic processes within the nodule (e.g., zeatin, riboflavin, and purine synthesis). Compounds specific to the uninfected root and bacteria were also detected. Lastly, we performed depth profiling of intact nodules to reveal the location of metabolites to the cortex and inside the infected region, and lateral profiling of sectioned nodules confirmed these molecular distributions. Our results established the feasibility of LAESI–IMS–MS for the analysis and spatial mapping of plant tissues, with its specific demonstration to improve our understanding of the soybean‐rhizobial symbiosis.  相似文献   
4.
The establishment of the nitrogen‐fixing symbiosis between soybean and Bradyrhizobium japonicum is a complex process. To document the changes in plant metabolism as a result of symbiosis, we utilized laser ablation electrospray ionization‐mass spectrometry (LAESI‐MS) for in situ metabolic profiling of wild‐type nodules, nodules infected with a B. japonicum nifH mutant unable to fix nitrogen, nodules doubly infected by both strains, and nodules formed on plants mutated in the stearoyl‐acyl carrier protein desaturase (sacpd‐c) gene, which were previously shown to have an altered nodule ultrastructure. The results showed that the relative abundance of fatty acids, purines, and lipids was significantly changed in response to the symbiosis. The nifH mutant nodules had elevated levels of jasmonic acid, correlating with signs of nitrogen deprivation. Nodules resulting from the mixed inoculant displayed similar, overlapping metabolic distributions within the sectors of effective (fix+) and ineffective (nifH mutant, fix?) endosymbionts. These data are inconsistent with the notion that plant sanctioning is cell autonomous. Nodules lacking sacpd‐c displayed an elevation of soyasaponins and organic acids in the central necrotic regions. The present study demonstrates the utility of LAESI‐MS for high‐throughput screening of plant phenotypes. Overall, nodules disrupted in the symbiosis were elevated in metabolites related to plant defense.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号